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ABSTRACT 

The objective of this study is to develop a new modified Bayesian Kriging 

(MBKG) surrogate modeling method that can be used to carry out confidence-based 

reliability-based design optimization (RBDO) for problems in which simulation analyses 

are inherently noisy and standard Kriging approaches fail. The formulation of the MBKG 

surrogate modeling method is presented, and the full conditional distributions of the 

unknown MBKG parameters are derived and coded into a Gibbs sampling algorithm. 

Using the coded Gibbs sampling algorithm, Markov chain Monte Carlo is used to fit the 

MBKG surrogate model. 

A sequential sampling method that uses the posterior credible sets for inserting 

new design of experiment (DoE) sample points is proposed. The sequential sampling 

method is developed in such a way that the new DoE sample points added will provide 

the maximum amount of information possible to the MBKG surrogate model, making it 

an efficient and effective way to reduce the number of DoE sample points needed. 

Therefore, it improves the posterior distribution of the probability of failure efficiently. 

Finally, a confidence-based RBDO method using the posterior distribution of the 

probability of failure is developed. The confidence-based RBDO method is developed so 

that the uncertainty of the MBKG surrogate model is included in the optimization 

process. 

A 2-D mathematical example was used to demonstrate fitting the MBKG 

surrogate model and the developed sequential sampling method that uses the posterior 

credible sets for inserting new DoE. A detailed study on how the posterior distribution of 

the probability of failure changes as new DoE are added using the developed sequential 

sampling method is presented. Confidence-based RBDO is carried out using the same 2-

D mathematical example. Three different noise levels are used for the example to 

compare how the MBKG surrogate modeling method, the sequential sampling method, 
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and the confidence-based RBDO method behave for different amounts of noise in the 

response. A comparison of the optimization results for the three different noise levels for 

the same 2-D mathematical example is presented. 

A 3-D multibody dynamics (MBD) engineering block-car example is presented. 

The example is used to demonstrate using the developed methods to carry out 

confidence-based RBDO for an engineering problem that contains noise in the response. 

The MBD simulations for this example were done using the commercially available 

MBD software package RecurDyn. Deterministic design optimization (DDO) was first 

done using the MBKG surrogate model to obtain the mean response values, which then 

were used with standard Kriging methods to obtain the sensitivity of the responses. 

Confidence-based RBDO was then carried out using the DDO solution as the initial 

design point. 
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CHAPTER 1 

INTRODUCTION 

This study presents a new surrogate modeling method for reliability-based design 

optimization (RBDO) of problems whose simulation analyses are inherently noisy. A 

new modified Bayesian Kriging (MBKG) surrogate modeling method is proposed for 

handling performance measures of noisy simulations, which will accurately represent the 

true underlying unknown performance function without noise. Using Bayesian methods 

allows for a way to naturally characterize the uncertainty of the predicted values by 

providing the distribution of the predicted values. Credible sets produced by the surrogate 

model are used to develop a sequential sampling method and also to create a conservative 

RBDO design. The likelihood for the MBKG is proposed, and the prior distributions to 

be used with the likelihood to fit the Bayesian model are presented. A Markov chain 

Monte Carlo algorithm for fitting the MBKG model is developed as follows. Using the 

prior distributions, the full conditional distributions of the MBKG parameters are derived; 

where possible, conjugate prior distributions are used to help simplify the full 

conditionals and to ease the computational burden of fitting the surrogate model. 

Computer simulations of engineering models are computationally expensive; therefore, it 

is necessary to reduce the number of design of experiment (DoE) samples needed. An 

efficient DoE sampling method using the credible sets of the MBKG model will be 

developed to systematically reduce the uncertainty in the surrogate model. Finally, a 

confidence-based RBDO method using the posterior distribution of the probability of 

failure will be developed. 

Section 1.1 presents the background and motivation of the proposed research; 

Section 1.2 gives a brief introduction to Bayesian statistics; Section 1.3 discusses the 

objectives of the proposed research; and Section 1.4 presents the thesis organization. 
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1.1 Background and Motivation 

1.1.1 Reliability-Based Design Optimization 

Customers want products that are low cost and also reliable, whether they are 

purchasing a small kitchen appliance, smartphone, tablet, computer, vehicle, or heavy 

machinery. At the same time, manufacturers want to make products that cost less to make 

and are reliable in order to reduce both warranty and production costs. The objective to 

reduce cost naturally led to the development of optimization methods. Just carrying out 

optimization without consideration of uncertainty is referred to as deterministic design 

optimization (DDO). Deterministic design optimization solutions, i.e., designs of 

products, are only approximately 50% reliable. Safety factors are often used when 

designing products to try to ensure that they will last and be reliable; however, estimation 

of the safety factor could be heuristic, which in turn increases manufacturing cost or 

reduces reliability. Both of these realities have brought about the need for RBDO. 

Most reliability analysis methods can be classified into groups, the first being 

sensitivity-based methods and the second being sampling-based methods. The literature 

is rich with numerous sensitivity-based methods that have been developed using the most 

probable point (MPP) [Lee et al. 2010; Lee et al. 2008; Rahman and Wei 2006; Youn and 

Choi 2003; Haldar and Mahadevan 2000; Tu et al. 1999]. Some common sensitivity-

based methods are the first-order reliability method (FORM) [Haldar and Mahadevan 

2000; Hohenbichler et al. 1987; Madsen et al. 1985], the second-order reliability method 

(SORM) [Haldar and Mahadevan 2000; Hohenbichler and Rackwitz 1988; Hohenbichler 

et al. 1987; Madsen et al. 1985], and the dimension reduction method (DRM) [Lee et al. 

2010; Lee et al. 2008; Rahman and Wei 2008; Rahman and Wei 2006]. While these 

methods can be computationally cheaper than sampling-based methods, one pitfall is that 

they may not be as accurate as sampling-based methods for highly nonlinear problems 

[Lee et al. 2011]. Another shortcoming of these methods is that they require the 
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sensitivity of the performance measures to be available. Obtaining the sensitivity, while 

possible for some problems, can be a daunting if not impossible task for some problems 

that are highly nonlinear and/or coupled with fluid structure interaction, e.g., crash and 

blast problems. 

To overcome the shortfalls of the sensitivity-based methods, sampling-based 

methods have been developed. A brute force approach would be to do direct Monte Carlo 

simulation (MCS) using the computer-aided engineering (CAE) simulation models, e.g., 

finite element (FE) models and computational fluid dynamic (CFD) models, to calculate 

the reliability. While this method can be highly accurate using a large number of MCS 

points [Haldar and Mahadevan 2000], its limitation is the large number of MCS points 

required due to the computational cost of the CAE model simulations, thus rendering it 

impractical. In order to overcome the impractical computational cost of direct MCS using 

CAE simulations and to overcome the pitfalls of the sensitivity-based methods, the use of 

surrogate models is becoming a more common practice [Shi et al. 2012; Song et al. 2011; 

Zhao 2011; Zhao et al. 2011; An and Choi 2012; Rajashekhar and Ellingwood 1993]. 

There are three advantages of using surrogate models. The first is that the sensitivity of 

the performance measure is not needed to construct the surrogate. The second is that 

surrogate models are computationally inexpensive to use for evaluating large numbers of 

MCS points compared to the computational cost of the CAE models. The third is that 

surrogate models can be built using a limited number of CAE model simulations, 

therefore reducing the overall computational cost of performing a reliability analysis. The 

literature is full of numerous surrogate modeling methods that have been developed; 

these will be discussed in the next section. 
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1.1.2 Surrogate Modeling Methods 

Surrogate modeling methods have been under development for decades and are 

still being actively developed. The main reason for all the development is that there is not 

one surrogate modeling method that works for every problem. However, the use of 

surrogate models for product design is becoming a more common practice during the 

design stage to help engineers gain a quick understanding of a problem due to their 

relative ease of use, inexpensive computational time, and ready availability in a number 

of commercial software programs, e.g., HyperStudy, Isight, Matlab, and Mathematica. 

As previously mentioned, there are numerous surrogate modeling methods in the 

literature, such as polynomial response surface (PRS) [Forrester and Keane 2009; 

Forrester et al. 2008; Fang et al. 2005; Jin et al. 2001; Box and Draper 1987; Rajashekhar 

and Ellingwood 1993; Mullur and Messac 2006; Simpson et al. 2001; Wang and Shan 

2007], polynomial chaos [Wiener 1938; Hu and Youn 2011; Isukapalli 1999; Kewlani 

and Iagnemma 2008; Wei et al. 2008], moving least squares (MLS) [Forrester and Keane 

2009; Breitkopf et al. 2005; Lancaster and Salkauskas 1981; Levin 1998], multivariate 

adaptive regression splines (MARS) [Jin et al. 2001; Friedman 1991; Friedman and 

Roosen 1995; Lewis and Stevens 1991; Simpson et al. 2001; Wang and Shan 2007], 

support vector machine and support vector regression [Forrester and Keane 2009; 

Forrester et al. 2008; Burges 1998; Hearst et al. 1998; Wang and Shan 2007], virtual 

support vector machine (VSVM) [Song et al. 2011], radial basis functions (RBF) 

[Forrester and Keane 2009; Buhmann 2003; Forrester et al. 2008; Fang et al. 2005; Jin et 

al. 2001; Park and Sandberg 1991; Dyn et al. 1986; Mullur and Messac 2006; Wang and 

Shan 2007], neural networks (NN) [Agatonovic-Kustrin and Beresford 2000; Almeida 

2002; Fonseca et al. 2003; Liu and Fang 2009; Sakata et al. 2010; Ukrainec et al. 1989; 

van der Merwe et al. 2007; Zobel et al. 2008; Galushkin 2007; Gallant 1993; Forrester et 

al. 2008; Simpson et al. 2001; Wang and Shan 2007], ordinary Kriging (OKG) and 

universal Kriging (UKG) [Krige 1951; Cressie 1991; Sacks et al. 1989; Beers and 
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Kleijnen 2003; Forrester and Keane 2009; Forrester et al. 2008; Mullur and Messac 2006; 

Jin et al. 2001; Simpson et al. 2001; Wang and Shan 2007], and dynamic Kriging (DKG) 

[Zhao 2011; Zhao et al. 2011]. There have been surrogate modeling methods developed 

that use Bayesian methods [Shi et al. 2012; An and Choi 2012; Romero et al. 2012; 

Romero et al. 2003; Romero 2008; Omre and Halvorsen 1989; Currin et al. 1991]. 

However, none of the methods studied claim to do a full Bayesian analysis when creating 

the surrogate model; they are only borrowing concepts from the Bayesian methods. 

As previously described, a surrogate model is used to do the MCS prediction for 

the reliability analysis for the sampling-based RBDO method to ease the computational 

burden. Thus, the accuracy of the reliability analysis depends on the accuracy of the 

surrogate model. Kriging has become a popular surrogate modeling method because it 

offers flexibility in the choice of both the mean structure and the correlation function 

used [Forrester and Keane 2009; Forrester et al. 2008]. Dynamic Kriging was developed 

because it was found to be more accurate than OKG or UKG, giving better reliability 

analysis results [Zhao 2011; Zhao et al. 2011]. However, OKG, UKG, and DKG are 

typically formulated and used as interpolation methods and therefore break down when 

the response data contains noise [Forrester and Keane 2009; Forrester et al. 2008; Sakata 

et al. 2007; Sakata et al. 2008]. There are approximation and regression methods, e.g. 

MLS and MARS, which can be used when the response data contains noise. The 

formulation of Kriging can even be modified to change it to a regression method 

[Forrester and Keane 2009; Forrester et al. 2008; Sakata et al. 2007; Sakata et al. 2008]. 

The disadvantage of these methods is that they do not allow for a direct way to 

separate the noise from the data. Thus, when using them to predict response values, it is 

not known how much noise there may be in the predicted response value. If these 

regression surrogate models are used for MCS prediction for reliability analysis, this will 

affect the amount of uncertainty and variability that there is in the reliability analysis. It is 

not clear or easy to distinguish if the variability in the reliability analysis is due to the 
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noise in the predicted response or due to the uncertainty in the surrogate model itself. 

Another disadvantage of these methods is that they do not have a systematic way of 

characterizing the uncertainty of the surrogate model, the noise in the response value, or 

the uncertainty in the predicted response values using the surrogate model. Therefore, a 

surrogate modeling method that can systematically characterize all of these uncertainties 

as well as accurately predict the true underlying response value without noise needs to be 

investigated. Bayesian statistical methods allow for a natural and systematic way of 

characterizing uncertainty when predicting unknown parameters of distributions as well 

as predicting parameters that depend on these unknown distribution parameters. A brief 

introduction of Bayesian statistical methods is given in the next section. 

 

1.2 Bayesian Statistics 

1.2.1 Likelihood and Prior Distributions 

In real-world problems there is often data available or obtainable that is known or 

assumed to come from a given distribution type, e.g., the data is known to follow a 

normal distribution. The distribution from which the data comes is referred to as the 

sampling distribution or data distribution [Gelman et al. 2004; Hamada et al. 2008]. 

However, even when the distribution type of the data is known, the parameter values of 

the distribution are often unknown. When the data distribution is considered as a function 

of the unknown distribution parameters for a given data set, it is referred to as the 

likelihood function [Gelman et al. 2004; Cowles 2013; Hamada et al. 2008; Bayes and 

Price 1763]. 

The goal in Bayesian statistics is to come up with an estimate of the unknown 

parameter values using both the available data and prior knowledge about the unknown 

parameters. In Bayesian statistics the unknown parameters are treated as if they are 

random variables. Any prior knowledge or belief about the unknown parameter is 
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expressed using a probability distribution. The definition of subjective probability of an 

event given by Cowles is: “A probability of an event or of the truth of a statement is a 

number between 0 and 1 that quantifies a particular person’s subjective opinion as to how 

likely that event is to occur (or to have already occurred) or how likely the statement is to 

be true” [2013]. Similarly, a subjective probability distribution quantifies one’s 

knowledge about an unknown parameter that may take on any value in a continuum. 

These probability distributions that express one’s knowledge about the unknown 

parameters are referred to as the prior distributions or simply as the priors [Cowles 2013; 

Gelman et al. 2004; Hamada et al. 2008; Bayes and Price 1763]. A Bayesian analysis is 

carried out to update one’s subjective probability distribution of the unknown parameters 

by combining prior information with the new information contained in the data. The next 

section will describe how Bayes’ rule is used with the likelihood and prior distributions to 

calculate the posterior distribution. 

 

1.2.2 Bayes’ Rule and Posterior Distributions 

Bayes’ rule provides a way to mathematically and systematically update one’s 

subjective probability distribution on model parameters. All knowledge available before 

the current data is observed is encapsulated in the prior. The updating occurs by 

incorporating the new data contained in the likelihood. Bayes’ rule states that the 

posterior probability distribution of model parameters given the data is proportional to the 

product of the likelihood and prior probability distribution [Bayes and Price 1763; 

Cowles 2013; Gelman et al. 2004; Hamada et al. 2008]. Mathematically this can be 

written as shown in Eq. (1.1). 

 
 ( ) ( ) ( )| |f Parameter Data f Parameter f Data Parameter∝ ×   (1.1) 
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The final probability distribution given on the left side of Eq. (1.1) is called the 

posterior distribution, often referred to as the posterior. The posterior distribution 

expresses the current state of knowledge about model parameters. The posterior 

distribution can be used to obtain desired values about the event, e.g., the mean or median 

of the posterior could be used as a point estimate for the unknown parameter value. The 

posterior variance reveals the amount of uncertainty that remains about the parameter 

value—the larger the variance, the larger the uncertainty about what the true parameter 

value is. The posterior can also be used to give probability intervals, called credible sets, 

which are believed to contain the true parameter value with the specified probability, e.g., 

the 95% credible set for the parameter can easily be obtained from the posterior. Credible 

sets have a slightly different meaning than confidence intervals. For the 95% credible set, 

the probability that the true value of the parameter is in that interval is 95%. A 95% 

confidence interval means that if the same experiment or test is repeated many times to 

generate many different data sets, and each data set is used to generate a 95% confidence 

interval, only 95% of the confidence intervals generated would capture the true parameter 

value, while 5% of the confidence intervals generated would not capture the true 

parameter value [Cowles 2013; Gelman 2004]. The next section will discuss the use of 

conjugate priors and Markov chain Monte Carlo for updating the posterior distribution. 

 

1.2.3 Conjugate Priors and Markov Chain Monte Carlo 

As described in the previous section, the product of the prior distribution and 

likelihood is used in Bayes’ rule to construct the posterior distribution of the unknown 

parameter(s). When possible, it is desirable to choose the prior distribution from a 

parametric family that takes on the same functional form as the likelihood function for 

the unknown parameter(s); priors of such a form are called conjugate priors. The 

parameters of the prior distribution are then chosen such that the prior reflects the known 
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information and beliefs about the unknown parameter(s). When applying Bayes’ rule to 

the likelihood with a conjugate prior, the posterior distribution will belong to the same 

parametric family as the prior, i.e., the posterior distribution type will be the same 

distribution type as the prior. The parameter values of the posterior distribution will be a 

combination of the prior parameter values and the data used for the Bayesian analysis 

[Cowles 2013; Gelman 2004; Hamada et al. 2008]. 

There are scenarios in which a conjugate prior does not exist for a given problem, 

e.g., a conjugate prior does not adequately reflect the prior knowledge and belief about 

the unknown parameter(s), or there are multiple unknown parameters for which a 

conjugate joint distribution does not exist. For such scenarios, any distribution type that 

reflects the prior knowledge and belief about the unknown parameter(s) can be used as 

the prior. The use of such priors, however, leads to posterior distributions that most likely 

are not from a known distribution family type. Bayes’ rule can still be applied in such 

cases but has to be done using a numerical method. 

Markov chain Monte Carlo (MCMC) is a numerical method that can be used to 

draw samples from high-dimensional and nonstandard distribution types. One 

disadvantage of MCMC is that the samples drawn from the distribution are not 

independent, and this needs to be taken into consideration when using the samples for 

inference [Cowles 2013; Gelman 2004; Gilks et al. 1998; Hamada et al. 2008; Tierney 

1998; Feller 1968]. The Markov property states that a sample drawn at a given time point 

conditional on the sample drawn at the time point immediately before it is independent of 

all the earlier samples drawn. Under certain regularity conditions, it can be shown that a 

Markov chain will converge in distribution to samples drawn from the target, i.e., 

posterior distribution [Cowles 2013; Gelman 2004; Gilks et al. 1998; Tierney 1998; 

Feller 1968]. There is a debate over whether it is better to run one long Markov chain or 

to run multiple shorter parallel Markov chains starting at different initial values to 

attempt to determine if the Markov chain has converged to the target distribution as well 
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as how to best assess whether convergence has occurred [Kass et al. 1998; Cowles and 

Carlin 1996]. One common and well-accepted way of diagnosing convergence in 

distribution when using MCMC is to use the Brooks, Gelman, and Rubin (BGR) 

diagnostic [Gelman and Rubin 1992; Brooks and Gelman 1998]. The BGR diagnostic 

requires running at least two parallel Markov chains starting at over-dispersed initial 

values. The BGR diagnostic uses the samples drawn from the parallel Markov chains to 

calculate credible sets of the individual chains using an increasing number of samples 

from the chain. The parallel chains are also pooled together to form one sample set that is 

used to calculate credible sets using an increasing number of samples. If widths of the 

credible sets calculated using the two different methods stabilize and become 

approximately equal, the MCMC chains are likely to have converged in distribution 

[Gelman and Rubin 1992; Brooks and Gelman 1998; Lunn et al. 2000; Lunn et al. 2009; 

Gelman 2013; Cowles 2013]. It is possible for the BGR diagnostic to misdiagnose 

convergence, i.e., the BGR diagnostic shows that convergence has been achieved when in 

actuality convergence has not yet been reached. The next section will discuss the 

objectives of the proposed study and how Bayesian statistical methods will be used in 

creating and fitting a surrogate model for problems with noisy simulation analyses, as 

well as capturing the uncertainty in the surrogate model and predicted values using 

credible sets. 

 

1.3 Objectives of the Proposed Study 

The first objective of this study is to develop a modified Bayesian Kriging 

(MBKG) surrogate modeling method that can accurately model the true underlying 

response value for noisy simulations. The posterior credible sets of the MBKG surrogate 

model will capture and show the uncertainty in the predicted values. The posterior 

credible sets will be used for carrying out confidence-based RBDO. The different Kriging 
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methods, OKG, UKG, and DKG, have been shown to be more accurate while using less 

data than other existing surrogate modeling methods [Zhao 2011; Zhao et al. 2011; 

Forrester and Keane 2009; Forrester et al. 2008]. This is why this study proposes using a 

modified Bayesian Kriging method. 

The second objective is to develop an efficient method for selecting new DoE 

samples using the credible sets. This will allow for a systematic and mathematical way to 

continuously improve the MBKG surrogate model and measure the amount of 

improvement during sequential DoE sampling. Using the credible sets, new DoE samples 

will be added in areas where the uncertainty of the surrogate model is large, thereby 

decreasing the uncertainty of the surrogate model. 

The third and final objective is to develop a confidence-based RBDO method 

using the posterior distribution of the probability of failure. The confidence-based RBDO 

method will be used to generate conservative reliable optimal designs. In order to 

perform optimization, the sensitivity of the probability of failure is needed and thus will 

be derived. The next section describes the organization of the thesis. 

 

1.4 Organization of Thesis 

Chapter 2 presents fundamental concepts of reliability analysis and reliability-

based design optimization for both sensitivity-based and sampling-based methods. 

Chapter 3 presents the existing conventional Kriging methods and the proposed 

modified Bayesian Kriging method. The prior distributions and corresponding full 

conditional distributions for the modified Bayesian Kriging method are also presented. 

Chapter 4 presents three different examples demonstrating the use of the modified 

Bayesian Kriging method for fitting problems with noisy responses. 
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Chapter 5 presents the proposed sequential sampling method that uses the 

posterior credible sets for inserting new design of experiment sample points for updating 

the modified Bayesian Kriging surrogate model. 

Chapter 6 presents the confidence-based reliability-based design optimization 

method that uses the posterior distribution of the probability of failure. A mathematical 

example using different amounts of noise are used to demonstrate the method. A 3-D 

multibody dynamics engineering example is used to demonstrate the method. 

Chapter 7 presents the conclusions of the study and the future research to be 

carried out to enhance the modified Bayesian Kriging method to make carrying out 

confidence-based RBDO more efficient. 
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CHAPTER 2 

DESIGN UNDER UNCERTAINTY 

2.1 Introduction 

This chapter gives a summary of the fundamental concepts in design under 

uncertainty, including sensitivity-based and sampling-based RBDO methods. Sections 

2.2 and 2.3 present the basic ideas of reliability analysis and inverse reliability analysis 

methods. Section 2.4 discusses the sensitivity-based method using both the FORM and 

DRM methods. Section 2.5 introduces the sampling-based RBDO that is used for 

problems when the sensitivity cannot be calculated. As discussed in the previous chapter, 

the sampling-based method uses MCS for calculating the probability of failure and also 

the probabilistic sensitivity for the performance measures that are used for optimization. 

 

2.2 Reliability Analysis 

In order to perform a reliability analysis, the calculation of the probability of 

failure is required. The probability of failure, denoted by FP , is calculated using the 

multi-dimensional integral [Madsen et al. 1986] 

 
 

( ) 0
[ ( ) 0] ( )F G

P P G f d
>

≡ > = ∫ XX
X x x   (2.1) 

 

where T
1 2={ ,  , ,  }nrX X XX   is an nr dimensional random vector, nr  is the number of 

random variables, ( )G X  is the performance measure function that is defined such that 

( ) 0G >X  is failure, and ( )fX x  is the joint probability density function (PDF) of the 

random input variables X . For most real-world engineering problems, the exact 

evaluation of Eq. (2.1) is very difficult if not impossible to carry out since ( )fX x  is 

usually non-Gaussian due to correlation in the random variables and ( )G X  can be highly 

 

 



www.manaraa.com

  14 
 

nonlinear. The integration domain of Eq. (2.1) generally cannot be expressed analytically 

due to the nonlinearity of ( )G X . To handle the non-Gaussian distribution and highly 

nonlinear ( )G X , a transformation of the random variables, X , from the X-space to the 

independent standard normal U-space is carried out [Rosenblatt 1952; Hogg et al. 2005]. 

To deal with highly nonlinear performance measures, ( )G X  is approximated using first-

order Taylor series expansion in the FORM and SORM methods for the sensitivity-based 

RBDO methods, and probabilistic MCS methods are used for sampling-based RBDO 

methods. The next section will introduce the transformation of variables. 

 

2.2.1 Random Variable Transformation 

For an nr dimensional random vector X  that has a joint cumulative distribution 

function (CDF) ( )FX x , let :T →X U  denote the transformation from X-space to U-

space that is defined by the Rosenblatt transformation [Rosenblatt 1952] as 

 
 ( )

( )

( )

1

2

1
1 1

1
2 2 1

1
1 2 1

:

, , ,
nr

X

X

nr X nr nr

u F x

u F x x
T

u F x x x x

−

−

−
−

  = Φ  
  = Φ  

  = Φ  





  (2.2) 

where ( )1 2 1, , ,
iX i iF x x x x −  is the conditional CDF given by 

 
 

( ) 1 2

1 2 1

1 2 1
1 2 1

1 2 1

( , , , , )
, , ,

( , , , )

i

i

i

i

x

X X X i
X i i

X X X i

f x x x d
F x x x x

f x x x

ξ ξ

−

−−∞
−

−

= ∫ 









  (2.3) 

 

where ξ  is the random variable being integrated over and ( )Φ •  is the standard normal 

CDF given by 
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 21 1( ) ( ) exp
22

u u
u d dφ ξ ξ ξ ξ

π−∞ −∞

 Φ = = − 
 ∫ ∫   (2.4) 

where φ  is the standard normal PDF. 

The inverse transformation of Eq. (2.2) is expressed as 

 
 ( )

1

2

1
1 1

1
2 2 11

1
1 2 1

( )
:

( , , , )
nr

X

X

nr X nr nr

x F u

x F u x
T

x F u x x x

−

−
−

−
−

 = Φ  
 = Φ  

 = Φ  





  (2.5) 

If the random variables of the X  vector are independent, then the joint PDF is given as 

the product of the marginal PDF’s ( )
iX if x  as 

 
 

1 21 2( ) ( ) ( ) ( )
nrX X X nrf f x f x f x= × × ×X x    (2.6) 

In this case the Rosenblatt transformation and the inverse transformation simplify to 

 
 ( ) ( )1 1  and  

i ii X i i X iu F x x F u− − = Φ = Φ      (2.7) 

where ( )
iX iF x  are the marginal CDFs. Table 2.1 shows five representative distributions 

and their corresponding transformations, assuming the random variables are independent. 
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Table 2.1 Probability Distribution and Its Transformation between X- and U-space 

 Parameters PDF Transformation 

Normal 
meanµ =  
standard deviationσ =  

20.5[ ]1( )
2

x

f x e
µ

σ

πσ

−
−

=  X Uµ σ= +  

Log-
normal 

2 2ln[1 ( ) ]σσ
µ

= + , 

2ln( ) 0.5µ µ σ= −  

ln0.5[ ]1( )
2

x

f x e
x

µ
σ

π σ

−
−

=

 
exp( )X Uµ σ= +  

Weibull 

1(1 )v
k

µ = Γ + ,  

2 2 22 1[ (1 ) (1 )]v
k k

σ = Γ + −Γ +  

( )1( ) ( )
kx

k vk xf x e
ν ν

−−=  
1

[ ln( ( ))]kX v U= − Φ −  

Gumbel 
0.577µ ν
α

= + ,
6
πσ
α

=  ( )( )( )
xx ef x e

α να να
− −− − −=  

1 ln[ ln( ( ))]X Uν
α

= − − Φ  

Uniform 
2

a bµ +
= , 

12
b aσ −

=  1( ) ,f x a x b
b a

= ≤ ≤
−

 ( ) ( )X a b a U= + − Φ  

 

 

2.2.2 First-Order Reliability Method (FORM) and Second-

Order Reliability Method (SORM) 

To calculate the probability of failure of the performance measure function ( )G X  

using FORM and SORM, it is first necessary to find the MPP, which is defined as the 

point *u  on the limit state function, ( ) 0g =u , closest to the origin in the standard normal 

U-space as shown in Figure 2.1. Using the Rosenblatt transformation, the performance 

measure function in the U-space is defined as ( ) ( ( )) ( )g G G≡ =u x u x . Thus, the MPP can 

be found by solving the following optimization problem: 

 
 minimize     

subject to     g( ) 0=

u
u

  (2.8) 

The distance from the MPP to the origin is commonly called the Hasofer-Lind 

reliability index [Hasofer and Lind 1974] and is denoted by HLβ . Using this reliability 
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index, FORM can approximate the probability of failure using a linear approximation of 

the performance function given as 

 
 FORM

HL( )FP β≅ Φ −   (2.9) 

A quadratic approximation of the performance measure function in the U-space 

and the rotational transformation from the standard normal U-space to the rotated 

standard normal V-space is used in SORM to calculate the probability of failure 

[Breitung 1984; Hohenbichler and Rackwitz 1988; Rahman and Wei 2006]. 

 

Figure 2.1 MPP and Reliability Index HLβ  in the U-Space [Source: Wei 2006] 
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2.3 Inverse Reliability Analysis 

The reliability analysis using FORM and SORM presented in the previous section 

is called the reliability index approach (RIA) [Tu et al. 1999] since it finds the reliability 

index HLβ  using Eq. (2.8). The RIA method has the advantage that the probability of 

failure of the performance measure function can be calculated at the given design. 

However, the inverse reliability analysis in the performance measure approach (PMA) 

[Tu et al. 1999; Tu et al. 2001; Choi et al. 2001; Youn et al. 2003] is known to be 

numerically more efficient and stable than RIA. The probability of failure is not directly 

calculated in PMA. Instead, PMA determines if a given design satisfies the probabilistic 

constraint for a given target probability of failure Tar
FP . The optimization problem for 

PMA is defined as 

 
 maximize    g( )

subject to    tβ=
u

u
  (2.10) 

where tβ  is the target reliability index. This is called inverse reliability analysis because 

Eq. (2.10) is the inverse problem of Eq. (2.8). The probabilistic constraint is satisfied for 

the given target reliability index tβ   when the performance measure function value at the 

MPP, *( )g u , is less than zero, i.e., ( ) 0G <X  is defined as safe. 

There are several methods that have been developed to find the MPP using 

inverse reliability analysis with the given target reliability index tβ ; the different methods 

are the mean value (MV) method, the advanced mean value (AMV) method [Wu et al. 

1990; Wu 1994], the hybrid mean value (HMV) method [Youn et al 2003], and the 

enhanced hybrid mean value (HMV+) method [Youn et al. 2005]. 

The MV method creates a linear approximation of the performance measure 

function using the function value and gradient information at the mean value in the 

standard normal U-space. Thus, the MV method is a crude method for finding the MPP 
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of the inverse reliability analysis. Since no additional function evaluations and sensitivity 

information is needed, the MV method can be a good approximation to determine which 

constraints are active. 

The AMV method uses the MPP obtained from the MV method for the first 

iteration. AMV then uses the gradient information at the MPP provided by the MV 

method to find the next candidate MPP; the iteration continues until the approximate 

MPP converges to the correct MPP. For convex performance measure functions, the 

AMV method is known to be an efficient method. 

To overcome the issues AMV has with concave functions, the HMV method was 

developed. The HMV method uses the conjugate mean value (CMV) method for concave 

performance measure functions [Youn et al. 2003], and AMV is still used for convex 

performance measure functions. The HMV+ method uses interpolation between the two 

previous MPP candidate points for concave performance measure functions instead of 

using the CMV method [Youn et al. 2005]. 

 

2.4 MPP-based RBDO 

2.4.1 MPP-Based RBDO Using FORM 

The mathematical formulation of a general RBDO problem is expressed as 

 
 

Tar

minimize      Cost( )
subject to     [ ( ) 0] , 1, ,

, and
ii F

L U nd nr

P G P i nc> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d X



 

  (2.11) 

where T{ } , 1 ~id i nd= = =d μ(X)  is the design vector, T{ }iX=X  is the vector of 

random variables, and nc , nd , and nr  are the number of probabilistic constraints, 
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design variables, and random variables, respectively. Using inverse reliability analysis, 

the thi  probabilistic constraint can be rewritten as 

 
 Tar *[ ( ) 0] 0 ( ) 0

ii F iP G P G> − ≤ ⇒ ≤X x   (2.12) 

where *( )iG x  is the thi  probabilistic constraint evaluated at the MPP, *x , in the X-space, 

and Tar
iFP  is the target probability of failure for the thi  performance measure. 

Using FORM, Eq. (2.11) can be rewritten to give 

 
 

Tar

minimize      Cost( )
subject to     [ ( ) 0] ( ), 1, ,

, and
i ii F t

L U nd nr

P G P i ncβ> ≤ = Φ − =

≤ ≤ ∈ ∈

d
X

d d d d X



 

  (2.13) 

where 
it

β  is the target reliability index for the thi  constraint, and the probabilistic 

constraint can be written as 

 
 *

FORM[ ( ) 0] ( ) 0 ( ) 0
ii t iP G Gβ> −Φ − ≤ ⇒ ≤X x   (2.14) 

where *
FORMx  is the FORM-based MPP. 

To solve the optimization problem given in Eq. (2.13), the sensitivity of the 

probabilistic constraint in Eq. (2.14) with respect to the design variables ( )i id Xµ=  is 

required. Using the chain rule, the sensitivity of the probabilistic constraint with respect 

to the design variable can be written as 

 
 

* * ***

T*

1

( ) nr
i

i i

G G G x G
x== = ===

∂ ∂ ∂ ∂ ∂ ∂ = = =  ∂ ∂ ∂ ∂ ∂ ∂ 
∑

x x x x x xx xx x

x x
d d d d x

  (2.15) 

which can be simplified to give Eq. (2.16) [Gumbert et al. 2003; Hou et al. 2004]. 
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* * *

T*( )G G G

= = =

∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂ x x x x x x

x x
d d x x

  (2.16) 

 

2.4.2 MPP-Based RBDO Using DRM 

The dimension reduction method was developed to approximate multi-

dimensional integration of a function using a function with reduced dimension [Xu and 

Rahman 2004; Rahman and Xu 2004]. The univariate dimension reduction method is a 

decomposition of an nr  dimensional performance measure function into the summation 

of one-dimensional functions. Thus, an nr  dimensional performance measure function 

( )G X  can be decomposed into a summation of one-dimensional functions at the MPP of 

the random vector X  given as 

 
 * * * * *

1 1 1
1

ˆ( ) ( ) ( , , , , , , ) ( 1) ( )
nr

i i i nr
i

G G G x x X x x nr G− +
=

≅ ≡ − −∑X X x    (2.17) 

where * * * T
1 2={ ,  , ,  }nrx x x*x   is the FORM-based MPP of the performance measure 

function ( )G X  obtained from Eq. (2.10), and nr  is the number of random variables. The 

univariate DRM gives more accurate reliability analysis results compared to FORM [Lee 

et al. 2010; Lee et al. 2008]. 

 

2.5 Sampling-Based RBDO 

The MPP-based RBDO methods, FORM, SORM, and DRM, calculate the 

probability of failure of the performance measure function using approximations. For 

highly nonlinear problems, these approximations can be inaccurate and thus give 

unreliable designs. The MPP-based RBDO methods also require the sensitivity 

information of the performance measure functions, which can be difficult if not 
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impossible to calculate for real-world engineering problems. Therefore, a sampling-based 

RBDO method has been developed that uses surrogate models, MCS, and score functions 

to calculate the probability of failure and the sensitivity of the probabilistic constraints in 

RBDO [Shi et al. 2012; Song et al. 2011; Zhao 2011; Zhao et al. 2011; Lee et al. 2011]. 

 

2.5.1 Sampling-Based Probability of Failure 

In sampling-based RBDO, the reliability analysis at both the component and 

system levels involves the calculation of the probability of failure, denoted by FP . The 

probability of failure is calculated using a multi-dimensional integration and can be 

written as 

 
 ( ) [ ] ( ) ( ; ) ( )

nr F FF FP P I f d E IΩ Ω ≡ ∈Ω = =  ∫ Xψ X x x ψ x X


  (2.18) 

where ψ  is a vector of the distribution parameters, which typically includes the mean, μ , 

and the standard deviation, σ , of the random input variables { }T
1, , nrX X=X  , [ ]P   

represents a probability measure, FΩ  is the failure set, ( );fX x ψ  is the joint probability 

density function (PDF) of X , and [ ]E   is the expectation operator. The failure set is 

defined as { }: ( ) 0F iGΩ ≡ >x x  for component-level reliability analysis of the thi  

constraint function ( )iG x . For series system-level and parallel system-level reliability 

analysis of nc  performance measure functions, the failure set is { }1
: ( ) 0nc

F ii
G

=
Ω ≡ >x x



 

and { }1
: ( ) 0nc

F ii
G

=
Ω ≡ >x x



, respectively. ( )
F

IΩ x  in Eq. (2.18) is called the indicator 

function and is defined as 

 
 1,

( )
0, otherwiseF

FIΩ
∈Ω

≡ 


x
x   (2.19) 
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In this study, since the mean of the random variables X , { }T
1, , nrµ µ=μ   is the design 

variable vector, the vector of distribution parameters ψ  can be replaced with μ  for the 

computation of the probability of failure given in Eq. (2.18). 

 

2.5.2 Probabilistic Sensitivity Analysis 

For the derivation of the sensitivity of the probability of failure, the following four 

regularity conditions need to be satisfied [Rubinstein and Shapiro 1993; Rahman 2009; 

Lee et al. 2011; Zhao 2011]. 

1. The joint PDF ( );fX x μ   is continuous. 

2. The mean , 1, ,i i i nrµ ∈Μ ⊂ =  , where iM  is an open interval on  . 

3. The partial derivative ( ); / if µ∂ ∂X x μ  exists and is finite for all x  and iµ . In 

addition, ( )FP μ  is a differentiable function of μ . 

4. There exists a Lebesgue integrable dominating function, ( )r x  for all μ  such that 

 
 ( ; )( ) ( )

i

fg r
µ

∂
≤

∂
X x μx x   (2.20) 

With the four conditions satisfied, taking the partial derivative of Eq. (2.18) with 

respect to iµ  and using the interchangeability between the differential and integral 

operators, the sensitivity of the probability of failure is given as [Rahman 2009; Lee et al. 

2011] 
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∫
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X
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x μx x
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  (2.21) 

The partial derivative of the log function of the joint PDF in Eq. (2.21) with respect to iµ  

is called the first-order score function for iµ  and is denoted as 

 
 (1) ln ( ; )( ; ) .

i
i

fsµ µ
∂

≡
∂

X x μx μ   (2.22) 

As shown in Eq. (2.22), using the first-order score function in the proposed 

probabilistic sensitivity analysis does not depend on the sensitivity of the performance 

measure function ( )G x . The sensitivity of the joint input distribution is used instead and 

can be calculated analytically. This is shown in Figure 2.2 [Song 2013]; assume the 

horizontal axis represents the multi-dimensional random variable T
1 2[ , ,..., ]nrx x x=x  with 

the failure region for the thj  constraint ( )jG x  defined as ( ) 0jG >x . The joint input PDF 

( );fX x μ  is shown in Figure 2.2. When doing deterministic design optimization, at the 

current design point μ , the sensitivity of the constraint function ( )jG x  at point A has to 

be used. However, when doing RBDO, probabilistic constraints are used, and the 

sensitivity of the probability of failure with respect to the current design point μ  is used. 

The probability of failure is shown in the figure as the volume of the grey shaded region 

under the joint input PDF ( );fX x μ . The joint input PDF will move as the design point μ  

moves, and the rate of change of the probabilistic constraint will depend on the slope of 

the natural logarithm of the joint input PDF ( );fX x μ  at point B as shown in Figure 2.2 

and Eq. (2.22). 
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Figure 2.2 Probabilistic Sensitivity Analysis 

For independent input random variables, the first-order score function for iµ  in 

Eq. (2.22) can be written as 

 
 

(1) ln ( ; )ln ( ; )( ; ) i

i

X i i

i i

f xfsµ
µ

µ µ
∂∂

≡ =
∂ ∂

X x μx μ   (2.23) 

The marginal PDF and CDF are available analytically and are listed in Table 2.2 

for some common distributions. Since they are available analytically, the derivation of 

the first-order score function for independent random variables is straightforward and is 

listed in Table 2.3 [Rahman 2009; Lee et al. 2011]. 
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Table 2.2 Marginal PDF, CDF, and Parameters 

 PDF, ( )Xf x  CDF, ( )XF x  Parameters 

Normal 
20.5[ ]1

2

x

e
µ

σ

πσ

−
−

 
x µ
σ
− Φ 

 
 ,µ σ  

Log-normal 
2ln0.5[ ]1

2

x

e
x

µ
σ

π σ

−
−

 
ln x µ
σ
− Φ 

 
 

2 2ln[1 ( ) ]σσ
µ

= + , 

2ln( ) 0.5µ µ σ= −  

Gumbel ( )( ) xx ee
α να να

− −− − −  
( )xee

α ν

α
− −−  

0.577µ ν
α

= + ,
6
πσ
α

=  

Weibull 
( )1( )

kx
k vk x e

ν ν
−−  ( )

1
kx

ve
−

−  

1(1 )v
k

µ = Γ + , 

2 2 22 1[ (1 ) (1 )]v
k k

σ = Γ + −Γ +  

Table 2.3 First-Order Score Function for iµ  for Independent Random Variables 

Marginal 
Distribution 

First-Order Score Function, (1) ( ; )
i

sµ x μ  

Normal 2
i i

i

x µ
σ
−  

Log-normal 2

ln1 1 (ln )i i i i i
i i i

i i i i i i

x xσ µ µ σσ µ
σ µ σ σ µ µ

   ∂ − ∂ ∂
− + × + −   ∂ ∂ ∂   

 

Gumbel ( )i i ix
i ie

α να α − −−  

Weibull 
( 1)1 1 ln ( ) lniki i i i i i i i i i i

i i i i i i i i i i i i i

k k x k x k x k
k

ν ν ν
µ ν µ µ ν ν µ ν µ ν ν µ

 ∂ ∂ ∂ − ∂ ∂ ∂
− + − − − ∂ ∂ ∂ ∂ ∂ ∂ 

 

 

 

For bivariate correlated input random variables T{ , }i jX X=X , the joint PDF of 

X  using copula functions can be expressed as [Noh et al. 2009; Noh et al. 2010; Lee et 

al. 2011] 
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 2

,
( , ; )( ; ) ( ; ) ( ; ) ( , ; ) ( ; ) ( ; )

i j i jX i i X j j uv X i i X j j
C u vf f x f x C u v f x f x

u v
θ µ µ θ µ µ∂

= =
∂ ∂X x μ   (2.24) 

where C  is the copula function; ( ; )
iX i iu F x µ=  and ( ; )

jX j jv F x µ=  are marginal CDFs 

for iX  and jX , respectively; and θ  is the correlation coefficient between iX  and jX . 

The partial derivative of the copula function with respect to u  and v  is called the copula 

density function and is written as 

 
 2

,
( , ; )( , ; ) ( , ; ).uv

C u vc u v C u v
u v

θθ θ∂
≡ =

∂ ∂
  (2.25) 

Using Eq. (2.24), the first-order score function in Eq. (2.22) for bivariate correlated 

variables X  is given as 

 
 

(1) ln ( ; )ln ( ; ) ln ( , ; )( ; ) i

i

X i i

i i i

f xf c u vsµ
µθ

µ µ µ
∂∂ ∂

≡ = +
∂ ∂ ∂

X x μx μ   (2.26) 

Table 2.4 lists the derivation of the first term on the right-hand side of Eq. (2.26). 
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Table 2.4 Log-Derivative of Copula Density Function 

Copula Type 
ln ( , ; )

i

c u v θ
µ

∂
∂

 

Clayton 
(1 )1 (2 1)

1 i

u u
u u v

θ

θ θ

θ θ
µ

− +

− −

 + + ∂
− + + − ∂ 

 

AMH 
( )

( )( ) ( ) ( )( )

2

2

1 ( 1) 3 (1 )
1 1 1 2 1 1 1 i

v v v u
u v u v uv u v
θ θ θ

θ θ θ µ
 − − + + − ∂

− + − − − − − − − − − ∂   

Frank 
( )(1 ) ( )

(1 ) (1 ) ( )

2
1

u u v

u v u v
i

e e u
e e e e

θ θ

θ θ θ θθ
µ

+ +

+ + +

 − ∂
 +

− − + ∂  
 

FGM ( )( )
2 (2 1)

1 1 2 1 2 i

v u
u v

θ
θ µ

 − ∂
 + − − ∂ 

 

Gaussian 
1 1 1

1 1 2

( ) ( ) ( )
( ( )) ( ( ))(1 ) i

u v u u
u u

θ
φ φ θ µ

− − −

− −

 Φ Φ −Φ ∂
+ Φ Φ − ∂ 

 

Independent 0 

 

 

Thus, the sensitivity of the probability of failure in Eq. (2.21) can be easily calculated for 

bivariate correlated random variables. 

As described previously, surrogate models are used to calculate the probability of 

failure because it is computationally too expensive to carry out direct MCS of CAE 

models. If the surrogate model for the thj  constraint function ( )jG x  is denoted as ( )ˆ
jG x  

then the probability of failure can be approximated as 

 
 ( ) Tar

ˆ
1

1( ) 0 ( )
j jFj

M
m

F j F
m

P P G I P
M Ω

=

 ≡ > ≅ ≤  ∑x x   (2.27) 

where M  is the number of MCS samples, ( )mx  is the thm  realization of X , and the 

failure region ˆ
jFΩ  for the surrogate model is defined as ˆˆ { : ( ) 0}

jF jGΩ ≡ >x x . The 
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sensitivity of the probabilistic constraint in Eq. (2.21) can be approximated using 

[Rahman 2009; Lee et al. 2011] 

 
 

( ) (1) ( )
ˆ

1

1 ( ) ( ; ).j

iFj

M
F m m

mi

P
I s

M µµ Ω
=

∂
≅

∂ ∑ x x μ   (2.28) 

The number of MCS samples and the target probability of failure controls the 

accuracy of the MCS. Based on the 95% confidence interval of the estimated probability 

of failure, the percentage error can be defined as [Haldar and Mahadevan 2000] 

 
 Tar

Tar

(1 ) 200%F
MCS

F

P
M P

ε −
= ×

×
  (2.29) 

Thus, for a small non-zero target probability of failure, the number of MCS samples used 

needs to be increased to maintain a given target accuracy level. 

This section only considered component-level probability of failure. However, as 

long as the failure set is defined appropriately for the system level, then Eqs. (2.27) and 

(2.28) can be used for system-level RBDO. The accuracy and sensitivity of the 

probability of failure depend not only on the number of MCS samples used but also on 

the accuracy of the surrogate model used. Thus, to perform confidence-based RBDO, a 

surrogate modeling method that captures the uncertainty of the probability of failure due 

to the uncertainty in the surrogate model is required. It is developed in the next chapter. 
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CHAPTER 3 

MODIFIED BAYESIAN KRIGING 

3.1 Introduction 

As previously discussed, Kriging has become a popular surrogate modeling 

choice. However, because Kriging is typically formulated to be used as an interpolation 

method and is known to break down when the response values contain noise, it is not 

ideally suited for creating surrogate models for problems that contain noise. There is a 

way to modify the correlation matrix used in Kriging so that it becomes a regression 

method, but it does not offer a convenient way to separate the noise in the response 

values from the true underlying response values. In this chapter a modified Bayesian 

Kriging (MBKG) method is developed that can handle response values that contain noise, 

so that predicted response values without noise can be obtained from the MBKG model. 

The Kriging and dynamic Kriging methods are briefly reviewed in Section 3.2. The 

proposed modified Bayesian Kriging (MBKG) method is developed in Section 3.3, and 

the full conditional distributions used to fit the MBKG surrogate model are derived in 

Section 3.4. 

 

3.2 Kriging and Dynamic Kriging Methods 

3.2.1 Kriging Method 

The Kriging method is based on the assumption that the response values of 

interest are a realization from a stochastic process. Consider N  design of experiment 

(DoE) samples, denoted as T
1 2( , ,..., )DoE N=x x x x , and the corresponding N  responses, 

denoted as T
1 2( , ,..., )Ny y y=y , where m

DoE ∈x   and m  is the number of input variables, 

i.e., the spatial dimension of the input variables. The Kriging model for the responses is 

composed of two parts and is expressed mathematically as 
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 = +y Fβ Z   (3.1) 

where Fβ  is the mean structure of the responses, [ ( )], 1,2,..., , 1,2,...,j i i N j K= = =F f x  is 

a N K×  design matrix where ( )j if x  is the thj  basis function evaluated at the thi  DoE 

sample point, and T
1 2[ , ,..., ]Kβ β β=β  are the regression coefficients from the generalized 

least square regression method. The second part, Z , is a realization from a stationary 

Gaussian random process with zero mean and covariance function given by 

 
 2( , ) ( , , )i j i jRσΣ =x x θ x x   (3.2) 

where 2σ  is the process variance, R  is the spatial correlation function, θ  is a vector 

containing the correlation function parameters, and ix , jx  are two DoE samples [Zhao 

2011]. There are a number of different correlation functions that can be used, e.g., 

Gaussian, exponential, general exponential, linear, spherical, cubic, and spline. However, 

for engineering problems, the Gaussian correlation function is commonly used since it is 

infinitely differentiable and provides a smooth response surface. The parameters of the 

Kriging model that best fit the DoE samples and corresponding response values are 

determined by using the maximum likelihood estimation (MLE) method. 

 

3.2.2 Dynamic Kriging Method 

As previously mentioned, there are a number of different correlation functions to 

choose from, and there are also numerous basis functions to choose from. It has been 

shown that for different problems and data some correlation functions fit better than 

others; it has also been shown that a larger basis function set is not necessarily better than 

a smaller basis function set [Song et al. 2013; Zhao 2011; Zhao et al. 2011]. The latest 

proposed method chooses the mean structure from a choice of three mean structures and 

the correlation function from seven choices that best fit the data [Song et al. 2013]. This 
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dynamic Kriging method provides more flexibility and an automated way to build a 

Kriging model that can fit data from a wide range of problems. However, it is an 

interpolation method and breaks down when the response values contain noise. 

 

3.3 Modified Bayesian Kriging (MBKG) 

3.3.1 Modified Bayesian Kriging Formulation 

The basic assumption of Kriging is that the response values are realizations from 

a Gaussian random process. Thus, fitting a Kriging model is ideally suited for use with 

Bayesian statistical methods. Kriging is commonly referred to as a Bayesian method, 

though it is typically fitted using MLE methods rather than Bayesian methods. Fitting a 

Kriging model using Bayesian methods is ideal because the assumption is that the 

response values are realizations from a Gaussian random process. As described in Section 

1.2, the first part of a Bayesian analysis is determining the likelihood for the data. Once 

the likelihood is known, the next step is deciding the prior distributions to be used for the 

unknown parameters in the likelihood. Then, using the likelihood and prior distributions, 

the Bayesian analysis can be carried out to determine the posterior distribution of the 

unknown parameters. 

The modified Bayesian Kriging method assumes the response values come from a 

stationary Gaussian random process with a constant mean structure in the following form: 

 
 ( )2~ ,cMVN µ σ λ+  y 1 φ I   (3.3) 

where y  is the vector of response values at the DoE sample points. The above 

formulation states that the response values are conditionally independent given 

parameters defining a variance of 2σ λ  and a mean value of cµ +1 φ , which is composed 

of two parts; the first part is a constant value of cµ , and the second part is φ , which 
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depends on the spatial correlation of the DoE samples x . The second assumption is that 

φ  also follows a Gaussian random process with a zero mean and a covariance matrix that 

depends on the spatial correlation of the DoE samples x ; this is expressed 

mathematically as 

 
 ( )2~ ,MVN σ φ 0 Ψ   (3.4) 

where 2σ Ψ  is the covariance of the Gaussian process, 2σ  is the variance of the φ  

values, and Ψ  is the spatial correlation matrix. Similar to the Kriging method, the spatial 

correlation matrix is a function of the DoE samples x  via the correlation function that is 

used. As described in Section 3.2.1, there are a number of different correlation functions 

that can be used, and the Gaussian correlation function is the most commonly used for 

engineering problems and is defined as 

 
 2( ) ( )

1
exp

k
i i

j j j
j

x xθ
=

 
Ψ = − − 

 
∑   (3.5) 

where jθ  is the thj  correlation function parameter corresponding to the thj  dimension, k  

is the number of spatial dimensions, jx  is the value of the DoE sample for the thj  

dimension, and superscript i  is for the thi  DoE sample. 

In this study, seven different correlation functions from the literature are 

considered and are listed in Table 3.1 [Song et al. 2013; Lophaven et al. 2002]. 
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Table 3.1 Correlation Functions 

Name ( )iΨ   

Gaussian ( )

1
exp j

k pi
j j j

j
x xθ

=

 
− − 

 
∑  

Exponential ( )( )exp i
j j jx xθ− −  

General Exponential ( )1( )
1exp , 0 2ni

j j j nx x
θ

θ θ+

+− −  < ≤  

Linear { }( )max 0,1 i
j j jx xθ− −  

Spherical { }3 ( )1 1.5 0.5 , min 1, i
j j j j j jx xξ ξ ξ θ− +  = −  

Cubic { }2 3 ( )1 3 2 , min 1, i
j j j j j jx xξ ξ ξ θ− +  = −  

Spline 

2 3

3

( )

1 15 30 , for 0 0.2
1.25(1 ) , for 0 1

0, for 1,

where

j j j

j j

j

i
j j j jx x

ξ ξ ξ
ξ ξ

ξ

ξ θ

 − +  ≤ ≤
 −  < <
  ≥

 = −

 

 

 

The unknown MBKG parameters that need to be determined in order to fit the 

model to the data, i.e., fit the model to the DoE samples x  and their corresponding 

response values y , are cµ , 2σ , λ , and θ . The dimension of the θ  vector is the same as 

the spatial dimension of x . From the Bayesian perspective, the likelihood of the response 

values is the Gaussian process given in Eq. (3.3), and the prior for the φ  vector is the 

Gaussian process given in Eq. (3.4). The prior distributions for the remaining unknown 

parameters are presented in the next section. 

The modified Bayesian Kriging method can also be formulated to have a mean 

structure that is a function of the DoE samples x . For this formulation Eq. (3.3) is 

modified to give: 
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 ( )2~ ,MVN σ λ+  y μ φ I   (3.6) 

 

where cµ 1  is replaced by the vector μ , which is a function of the DoE sample points. 

The μ  vector is expressed as: 

 
 =μ Fβ   (3.7) 

where F  is the design matrix composed of the polynomial basis functions evaluated at 

the DoE sample points. For first order the design matrix F  is expressed as 

 
 (1) (1)

1
(2) (2)
1

( ) ( )
1 ( 1)

1
1

1

n

n

m m
n m n

x x
x x

x x
× +

 
 
 =
 
 
  

F



  



  (3.8) 

where m  is the number of DoE and n  is the number of variables, i.e., the dimension of 

the problem, and β  is a vector of unknown coefficients to be determined when fitting the 

MBKG surrogate model. 

 

3.3.2 Prior Distributions for MBKG Parameters 

For the three unknown parameters cµ , 2σ , and λ , semi-conjugate prior 

distributions are used to help improve the efficiency of fitting the MBKG surrogate 

model. For the cµ  parameter, the conjugate prior distribution is a normal distribution and 

is expressed as 

 
 ( )2~ ,c p pNµ µ σ   (3.9) 
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where pµ  and 2
pσ  are the prior mean and variance of the cµ  parameter, respectively. The 

conjugate prior distribution for the 2σ  parameter is an Inverse-Gamma distribution and is 

expressed as 

 
 ( )2 ~ ,InverseGamma σ σσ α β   (3.10) 

where σα  and σβ  are the prior parameters for the distribution. The conjugate prior for 

the λ  parameter is also an Inverse-Gamma distribution and is expressed as 

 
 ( )~ ,InverseGamma λ λλ α β   (3.11) 

where λα  and λβ  are the prior parameters for the distribution. The θ  parameters are 

embedded in the correlation matrix, and because of this there is no known conjugate 

distribution type that can be used for the prior distribution. Thus, the prior distribution for 

each of the θ  parameters is chosen to be a uniform distribution and is expressed as 

 
 ( )~ U ,b

j jj aθ θθ   (3.12) 

where jθ  is the thj  correlation function parameter, and 
j

aθ  and 
j

bθ  are the prior 

parameters for jθ . 

If the mean structure is not constant, then the μ  vector is used as in Eq. (3.6) and 

the conjugate prior is a multivariate normal distribution and is expressed as 

 
 ( )~ ,MVN β ββ μ Σ   (3.13) 

where βμ  and βΣ  are the prior mean vector and covariance matrix for the distribution. 

Prior to fitting the MBKG model, the response values y  are normalized such that 

they have a zero mean. The normalization is expressed as 
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 ( )
( )

i
i

y meany
std

−
=

y
y

 



  (3.14) 

where iy  is the normalized response value of the thi  response, iy  is the un-normalized 

response value for the thi  response, ( )mean y  is the mean of the un-normalized response 

values, and ( )std y  is the standard deviation of the un-normalized response value. The 

DoE samples are also normalized in the same way as the response values. In the literature 

it is has been found that, when fitting surrogate models a better fit can usually be 

achieved when the DoE samples and response values are normalized in some way to help 

restrict the range of the possible values than when they are not normalized [Forrester et 

al. 2008]. 

In addition to the normal distribution being a conjugate prior for the cµ  

parameter, it is also a good choice because of the normalization of the response values. It 

is expected that the overall mean of the normalized response values should be close to 

zero. Thus, a normal distribution with a zero mean and a standard deviation of 0.5 is a 

prior distribution that reflects this knowledge. This prior distribution can still be 

considered a relatively noninformative prior distribution; thus, it can be used in general 

when creating a surrogate model for any problem. 

The Inverse-Gamma distribution has positive support, meaning that the random 

variable of an Inverse-Gamma distribution can only take on positive values. From Eqs. 

(3.3) and (3.4) it can be seen that both parameters 2σ  and λ  are variance parameters to a 

Gaussian process; therefore, by definition they can only take on positive values. With the 

Inverse-Gamma distribution being a positive value distribution and a conjugate prior for 

both 2σ  and λ , it is ideally suited to be used as the prior distribution. 

As mentioned previously, there is no known conjugate prior distribution for the θ  

parameters. Thus, a uniform distribution was chosen mostly because it gives a direct way 

to limit the possible values that the θ  parameters can take on. Due to the normalization of 

 

 



www.manaraa.com

  38 
 

the DoE samples, the maximum distance in each of the spatial directions from any given 

DoE sample to all the others is roughly three. After studying the Gaussian correlation 

function closely, it was found that a θ  value of five and greater produces a correlation 

value that is asymptotically approaching zero regardless of the distance between the DoE 

samples. This is shown in Figure 3.1; the vertical axis is the squared distance between 

DoE sample points, and the horizontal axis is the correlation function parameter θ . As 

seen in the figure, when 2.5θ ≈  and the squared distance is greater than one, the 

correlation is smaller than 0.1. Also seen in the figure is that when 5θ = , the correlation 

is smaller than 0.1 except for squared distances that are approximately less than 0.5. 

Given this study, it was determined that an appropriate upper bound for θ  would be 

5θ =  and an appropriate lower bound would be 0.15θ = ; these are the bounds used in 

the uniform prior distribution. 

 

Figure 3.1 Correlation Contour of the Gaussian Correlation Function 
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Once the likelihood and prior distributions have been determined, the next step in 

a Bayesian analysis that uses the Gibbs sampling algorithm [Gelfand and Smith 1990] for 

Markov Chain Monte Carlo (MCMC) is to determine the full conditional distributions for 

the unknown parameters. The next section will show the derivation of the full conditional 

distributions. 

 

3.4 Full Conditional Distributions for MBKG Parameters 

3.4.1 Joint Distribution of the MBKG Parameters 

The joint posterior distribution of the unknown parameters in a Bayesian model is 

needed to derive the full conditional distributions of the unknown parameters being 

estimated. The full conditional distribution for the unknown parameter is derived from 

the joint distribution such that the full conditional distribution is only a function of the 

unknown parameters that the parameter of interest depends on. For the likelihood and 

prior distributions that were presented in Section 3.3, the joint posterior distribution of 

the MBKG surrogate model for the constant mean structure is the product of the 

likelihood and all the prior distributions, which is given as 

 
 ( ) ( ) ( )

( ) ( )
( ) ( )

2

1

2

2 2

, , , , | U ,b * ,

* , * ,

* , * ,

j j

k

c
j

p p

f a InverseGamma

N InverseGamma

MVN MVN

θ θ σ σ

λ λ

µ σ λ α β

µ σ α β

σ σ λ

=

 ∝  

+

∏θ φ y

0 Ψ μ φ I

  (3.15) 

The joint posterior distribution of the MBKG surrogate model considering the mean 

structure is expressed as 
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 ( ) ( ) ( )

( ) ( )
( ) ( )

2

1

2 2

, , , , | U ,b * ,

* , * ,

* , * ,

j j

k

j

f a InverseGamma

MVN InverseGamma

MVN MVN

θ θ σ σ

β β λ λ

σ λ α β

α β

σ σ λ

=

 ∝  

+

∏μ θ φ y

μ Σ

0 Ψ μ φ I

  (3.16) 

Substituting in the mathematical expression for each of the distributions in Eq. (3.15) 

gives the joint distribution as a function of the unknown parameters and the prior 

parameters and is given in Eq. (3.17). 

The Bayesian model proposed for the MBKG surrogate modeling method is not a 

new Bayesian model. The full conditional distributions of this Bayesian model have been 

previously derived by others. However, the use of this Bayesian model as a surrogate 

model is a new concept that has not previously been done. The methods developed in this 

study have been coded in MATLAB so that they can be easily integrated with existing 

RBDO methods that were coded in MATLAB. In order to code the Gibbs sampling 

algorithm needed to fit the MBKG surrogate model using MCMC, the full conditional 

distributions are needed. For this reason they have been derived again and are presented 

in this study for completeness. To derive the full conditional distribution for a parameter 

of interest, only the terms from the joint distribution that contains the parameter of 

interest are used. The full conditional distribution of the parameter of interest is 

proportional to the terms taken from the joint distribution. The next sections derive the 

full conditional distributions for each of the MBKG parameters. Note that the derivations 

in the next sections only show partial steps of the derivation. 
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3.4.2 Full Conditional for cµ  

Taking only the terms that depend on cµ  from the joint distribution in Eq. (3.17) 

gives the terms that are a function of the full conditional for cµ , which gives 
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Using index notation and grouping terms that are a function cµ  in Eq. (3.18), the right-

hand side can be written to give Eq. (3.19). Note that the full conditional in Eq. (3.18) is 

written as proportional to, so that constant terms, i.e., terms that are not a function of cµ , 

can be dropped from the equation. 
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After removing the constant term and defining the intermediate variables A  and B , Eq. 

(3.19) can be further simplified to give 
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Precision is defined as the inverse of the variance so that prior precision and unknown 

precision can be expressed as 

 
 2 2
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Rewriting Eq. (3.20) in terms of precision and the intermediate variables A  and B  gives 
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  (3.22) 

Once again terms that depend on cµ  are grouped together, and constant terms are 

dropped from the expression so that Eq. (3.22) is further simplified to give 
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The final step is then completing the square and dropping constant terms from the 

expression so that Eq. (3.23) is simplified to give 
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Equation (3.24) can be recognized as a kernel of a normal distribution that has a mean 

value of 
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The precision and variance of this normal distribution can be seen to be 
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The intermediate variables are defined as 
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The full conditional distribution of cµ  written in terms of the precision, intermediate 

variables, prior parameters, and MBKG parameters can be expressed as 
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3.4.3 Full Conditional for 2σ  

Taking only the terms that depend on 2σ  from the joint distribution in Eq. (3.17) 

gives the terms that are a function of the full conditional for 2σ , which gives 
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After grouping 2σ  terms and constant terms, the right-hand side of Eq. (3.29) can be 

rewritten to give 
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Dropping the constant terms and further simplifying Eq. (3.30) can finally be written as 
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Equation (3.31) can be identified as the kernel of an Inverse-Gamma distribution with the 

first parameter of the distribution given as nσα +  and the second parameter of the 

distribution given as 

 
 ( ) ( )11 1 1

2 2
TT

σβ
λ

−+ + − − − −φ Ψ φ y μ φ y μ φ   (3.32) 

 

 



www.manaraa.com

  45 
 

The full conditional distribution of 2σ  written in terms of the prior parameters and 

MBKG parameters can be expressed as 
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3.4.4 Full Conditional for λ  

Taking only the terms that depend on λ  from the joint distribution in Eq. (3.17) 

gives the terms that are a function of the full conditional for λ , which gives 
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Grouping terms that are a function of λ  and dropping constant terms, the right-hand side 

of Eq. (3.34) can be rewritten to give 
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Equation (3.35) can be identified to be a kernel to an Inverse-Gamma distribution with 

the first parameter given as / 2nλα +  and the second parameter given as 
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The full conditional distribution of λ  as a function of the prior parameters and MBKG 

parameters can be expressed as 
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3.4.5 Full Conditional for jθ  

Taking only the terms that depend on jθ  from the joint distribution in Eq. (3.17) 

gives the terms that are a function of the full conditional for jθ , which gives 
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The covariance matrix Σ  in Eq. (3.38) is calculated using the correlation matrix Ψ , 
2σ=Σ Ψ , and the correlation matrix depends on the correlation function parameter jθ . 

There is no known distribution type in which the random variable, i.e., jθ  in this case, 

appears in this form. To draw samples from this nonstandard distribution, the Metropolis-

Hastings algorithm [Metropolis et al. 1953; Hasting 1970] will be used. For numerical 

stability, the natural logarithm of the full conditional is used with the Metropolis-

Hastings algorithm. The natural logarithm of Eq. (3.38) can be written as 
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3.4.6 Full Conditional for φ  

Taking only the terms that depend on φ  from the joint distribution in Eq. (3.17) 

gives the terms that are a function of the full conditional for φ , which gives 
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After grouping and rearranging terms that are a function of φ  and dropping constant 

terms, the right-hand side of Eq. (3.40) can be written as 
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The intermediate variables A  and b  are defined in Eq. (3.41), which then simplifies to 
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After completing the square and dropping constant terms, Eq. (3.42) can be expressed as 
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where the intermediate variable, γ  is defined as 
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From Eq. (3.41) the intermediate variables A  and b  are defined as 
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Equation (3.43) is identified as a kernel to a multivariate normal distribution with the 

mean vector γ  and the covariance matrix 1−A ; note that Eq. (3.43) is written in terms of 

the precision and is hence the reason the covariance matrix is 1−A  and not A . 

Finally the full conditional of φ  as a function of the intermediate variables, prior 

parameters, and MBKG parameters can be expressed as 

 
 ( ) ( )2 1| , , , , ~ ,cf MVNµ σ λ −φ y θ γ A   (3.46) 

 

3.4.7 Full Conditional for β  

Taking only the terms that depend on β  in Eq. (3.16) gives the terms that are a 

function of the full conditional for β , which gives 
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After grouping and rearranging terms that are a function of β  and dropping constant 

terms, the right-hand side of Eq. (3.47) can be written as 
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Substituting in the value Fβ  for μ  and rearranging gives 
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The intermediate variables A  and b  are defined in Eq. (3.49), which then simplifies to 
 1exp

2
T T  ∝ − −   
β Aβ b β   (3.50) 

After completing the square and dropping constant terms, Eq. (3.50) can be expressed as 
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where the intermediate variable γ  is defined as 
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From Eq. (3.49) the intermediate variables A  and b  are defined as 
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Equation (3.51) is identified as a kernel to a multivariate normal distribution with the 

mean vector γ  and the covariance matrix 1−A ; note that Eq. (3.51) is written in terms of 

the precision and is hence the reason the covariance matrix is 1−A  and not A . 

Finally, the full conditional of β  as a function of the intermediate variables, prior 

parameters, and MBKG parameters can be expressed as 

 
 ( ) ( )2 1| , , , , ~ ,f MVNσ λ −β y θ φ γ A   (3.54) 

The next chapter will present examples fitting a MBKG surrogate model to some 

example problems. 
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CHAPTER 4 

APPLICATIONS OF MODIFIED BAYESIAN KRIGING (MBKG) 

4.1 Introduction 

This chapter presents fitting a modified Bayesian Kriging (MBKG) surrogate 

model to three different mathematical examples. The first example, in Section 4.2, 

presents fitting an MBKG surrogate model to a simple one-dimensional problem whose 

response contains noise. The section discusses the details of assessing the convergence of 

the Markov chain Monte Carlo (MCMC) analysis carried out to fit the MBKG surrogate 

model. Section 4.3 presents two examples, each fitting a MBKG surrogate model to a 

two-dimensional problem whose response contains noise. 

 

4.2 One-Dimensional Quadratic Mathematical Example 

This section demonstrates fitting a one-dimensional quadratic function that 

contains noise using the MBKG surrogate modeling method. The true quadratic function 

without noise is defined as 

 
 2( ) 0.6 3 4f x x x= − +   (4.1) 

where x  is the variable. For this mathematical example, the noise is generated using a 

normal distribution with zero mean and a standard deviation of 0.1. The noise, ε , is 

generated as realizations from the distribution, which is expressed as 

 
 ( )2~ 0,0.1Nε   (4.2) 

The response values with noise are then calculated as a summation of the true 

response value without noise given by Eq. (4.1) and a realization of ε . This is expressed 

as 
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 ( )i i iy f x ε= +   (4.3) 

where iy  is the thi  response value with noise, ix  is the thi  DoE sample point, and iε  is 

the thi  realization of noise. 

The red curve in Figure 4.1 shows a plot of Eq. (4.1). For this example, 25 DoE 

samples are used for fitting the surrogate model. To generate the uniformly spaced and 

randomly generated 25 DoE samples, the Latinized Centroidal Voronoi Tessellation 

(LCVT) [Burkardt et al. 2002; Saka et al. 2006] method was used. The responses for the 

25 DoE samples were generated using Eq. (4.1) with realizations taken from Eq. (4.2). 

The 25 response values that contain noise are shown as the black asterisks in Figure 4.1. 

The 25 DoE samples and responses with noise are first fitted using ordinary 

Kriging to demonstrate how Kriging is not well suited for use with response values that 

contain noise. Figure 4.2 shows a plot of Eq. (4.1) as the red curve, the 25 response values 

calculated using Eq. (4.3) are shown as the black asterisks, and the ordinary Kriging 

surrogate model is shown as the light purple curve. As seen in the figure, the ordinary 

Kriging surrogate model passes through the 25 DoE samples because Kriging is an 

interpolation method. 

The ordinary Kriging model shown in Figure 4.2 will clearly not provide accurate 

predictions of the response values of the true underlying function, which does not contain 

noise. In order to carry out RBDO, a regression surrogate model is needed to capture the 

underlying true function without noise. In addition, a surrogate model that can generate 

either confidence intervals or credible sets that contain the uncertainty of the surrogate 

model is needed in order to perform confidence-based RBDO. This is why, in this study, 

an MBKG surrogate modeling method was developed; it will be used to predict the true 

function without noise and also provides credible sets that can be used for confidence-

based RBDO. 
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Figure 4.1 Eq. (4.1) without Noise and 25 DoE Samples 

 

Figure 4.2 Ordinary Kriging Fit of Eq. (4.1) Using 25 DoE 

Recall from Chapter 3 that, when carrying out a Bayesian analysis, the prior 

parameters for the prior distributions of the unknown parameters are needed. For the 
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example in this section, Table 4.1 lists the prior parameters used for fitting the MBKG 

surrogate model. As described in Section 3.3.2, the response values are normalized such 

that they have a zero mean. This implies that the MBKG cµ  parameter should have a 

mean value close to zero. For this reason the prior parameters for the cµ  prior 

distribution were chosen so that the prior has a mean value of zero. The standard 

deviation was chosen so that the 95% interval given by the prior distribution would be 

about ±1. This prior reflects that the subjective probability of the cµ  parameter being in 

this interval is 95%. From previous experience of fitting ordinary Kriging models to 

mathematical examples, the 2σ  parameter has typically been seen to take on values 

between about five and 20. Thus, a prior distribution that has a 95% interval with a lower 

bound of about five and an upper bound of about 20 seemed to be a reasonable prior. For 

the problems being considered, it is assumed that the variance of the noise in the response 

is much smaller than the spatial variance of the response data. With this assumption the 

λ  parameter would be between zero and one. The prior for the λ  parameter was chosen 

to reflect this assumption. However, the prior being used does not restrict the value of λ  

from being greater than one. This makes it possible for the value of λ  to take on values 

larger than one should the data provide information where this is the case. Recall from 

Section 3.3.2 that a uniform prior with lower and upper bounds of 0.15 and 5, 

respectively, was chosen for the θ  parameter. These values were chosen based on a study 

done about the relationship between the correlation value, the distance between DoE 

samples, and the θ  parameter for the Gaussian correlation function. The reader is 

referred back to Section 3.3.2 for the details. 

 

 

 

 

 

 

 



www.manaraa.com

  55 
 

Table 4.1 Prior Parameter Values 

Unknown 
Parameter 

Prior 
Distribution Parameter 1 Parameter 2 95% Interval 

cµ  Normal 0pµ =  2 0.5pσ =  1.39−  1.39  
2σ  Inverse-Gamma 8.25σα =  72.5σβ =  4.91 20.04  

λ  Inverse-Gamma 1.9548λα =  0.2747λβ =  0.05  1.20  
θ  Uniform 0.15aθ =  5bθ =  0.27  4.88  

 

 

To fit the MBKG surrogate model, Markov chain Monte Carlo (MCMC) is used. 

As described in Section 1.2.3, when using MCMC it is desirable to run at least three 

parallel Markov chains so that they can be used with the Brooks, Gelman, and Rubin 

(BGR) diagnostic [Gelman and Rubin 1992; Brooks and Gelman 1998] to help assess if 

convergence in drawing samples from the posterior distribution has been achieved. Also 

recall that, when doing this, the three parallel Markov chains should be started at over-

dispersed initial values. For this example, three parallel chains are used, and the initial 

values for the Markov chains are taken from the prior distributions such that the three 

starting points come from the left tail, right tail, and the middle of the prior distribution. 

This is done in an effort to help make sure that the samples drawn cover the entire 

posterior distribution so that no modes of the posterior distribution are missed. The initial 

values for the Markov chains used for this example are given in Table 4.2. 
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Table 4.2 Initial Values for Markov Chains 

Unknown 
Parameter 

Chain 1 
Initial Values 

Chain 2 
Initial Values 

Chain 3 
Initial Values 

cµ  0.00 –1.00 1.00 
2σ  4.00 9.00 17.0 

λ  0.06 0.50 0.80 
θ  0.20 2.50 5.00 

 

 

Recall from Chapter 3 that the MBKG formulation has a φ  vector that is 

unknown and needs to be estimated when fitting the MBKG surrogate model. The length 

of the φ  vector, i.e., the number of unknown parameters in the vector, is equal to the 

number of DoE samples used to fit the model. For this example, 25 DoE samples are used 

to fit the model; thus the φ  vector has 25 unknown parameters that need to be fitted in 

addition to the other four unknown parameters cµ , 2σ , λ , and θ . The initial values used 

for the unknown φ  vector are calculated using the initial values of cµ  and the 25 

response values in the y  vector. The initial values ( )iφ  for the thi  chain are calculated as 

 
 ( ) ( )i DoE i

cµ= −φ y 1   (4.4) 

where ( )iφ  are the initial values for the thi  chain, DoEy  are the 25 response values for the 

corresponding 25 DoE samples, ( )i
cµ  is the initial value of cµ  for the thi  chain, and 1  is 

vector filled with the value of one and has the same length as the DoEy  vector. 

Using the prior parameters in Table 4.1, the initial values in Table 4.2, and the 

initial values calculated using Eq. (4.4), MCMC is carried out to fit the MBKG surrogate 

model. For this example, 100,000 iterations were run using MCMC for each of the three 

parallel chains, giving a total of 300,000 iterations. In Bayesian analysis, when using 

MCMC, one iteration means that a sample was drawn for each of the unknown 

parameters using the full conditional distributions as described in Sections 1.2 and 3.4.  
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Another method to help assess if convergence in the MCMC chains has been 

achieved is to plot the history of the samples drawn for each of the MCMC iterations for 

the unknown parameters. A history plot for each of the unknown parameters can be 

created, and the three parallel chains for the parameter are plotted on the same plot. If the 

MCMC iterations are not drawing samples from the same posterior distribution for the 

three chains, then the history plots may show this clearly. Figure 4.3, Figure 4.4, Figure 

4.5, and Figure 4.6 show the history plots of the first 5000, 200, 2000, and 2000 iterations 

for the four unknown parameters cµ , 2σ , λ , and θ , respectively. Note that the history 

plots start at the first iteration of the MCMC chains, i.e., the first sample drawn from the 

full conditionals. The initial values given in Table 4.2 are the th0  iteration of the MCMC 

chains, and it is common practice in Bayesian analysis that the th0  iteration is not shown 

in the history plots. In all the history plots, the three chains are plotted in three different 

colors: chain one is plotted in red, chain two is plotted in blue, and chain three is plotted 

in green. Figure 4.3 shows that, from the first iteration to about the 1500th iteration, chain 

three (green) looks to be drawing samples from a distribution that is wider than the 

distributions that the samples for chains one (red) and two (blue) are being drawn from. 

This is an indication that the three chains are not yet drawing samples from the same 

posterior distribution. However, after about iteration 1500 in Figure 4.3, the three chains 

look like white noise and look as though they may be drawing samples from the same 

posterior distribution. 

Figure 4.4 shows that chain one (red) starts off at relatively larger values than 

chains two (blue) and three (green). However, by about 40 iterations, the three chains are 

starting to come together, though they are not well mixed yet. In Figure 4.5, chain one 

(red) and two (blue) come together quickly, and by about 200 iterations they look as if 

they may be drawing samples from the same posterior distribution. Chain three (green), 

however, does not merge with chains one and two until after about 1400 iterations. After 

about 1400 iterations, it appears that the three chains are drawing samples from the same 
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posterior distribution. Similarly, in Figure 4.6, chains one (red) and two (blue) come 

together quickly after about 200 iterations. Chain three (green) does not merge with 

chains one and two until after about 1500 iterations. The history plots can be used to help 

determine when the chains may be starting to converge. However, it is important to run 

enough MCMC iterations to make sure that the chains stay together. Also, a large number 

of MCMC iterations are needed after the three chains have converged so that the samples 

drawn can be used to calculate statistics about the unknown parameters. 

 

Figure 4.3 History Plot of the First 5000 Iterations for cµ  
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Figure 4.4 History Plot of the First 200 Iterations for 2σ  

 

Figure 4.5 History Plot of the First 2000 Iterations for λ  
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Figure 4.6 History Plot of the First 2000 Iterations for θ  

Figures 4.7 – 4.10 are the history plots for all four unknown parameters and show 

the history for all 100,000 iterations. 

 

Figure 4.7 History Plot of All 100,000 Iterations for cµ  

 

 



www.manaraa.com

  61 
 

 

Figure 4.8 History Plot of All 100,000 Iterations for 2σ  

 

Figure 4.9 History Plot of All 100,000 Iterations for λ  
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Figure 4.10 History Plot of All 100,000 Iterations for θ  

As seen in all four figures, the three chains all appear to have converged to 

drawing samples from the same posterior distribution after about 1500 iterations. The 

history plots are helpful for trying to determine if the three chains look like they may 

have converged to drawing samples from the same posterior distribution. However, the 

history plots only provide a visual and do not provide an analytical way to assess if the 

three chains have converged to the same posterior distribution. 

As discussed in Section 1.2, the use of the BGR diagnostic is a common and well-

accepted method to help assess if the MCMC chains have converged. The BGR 

diagnostic provides both a visual and numerical way to help assess convergence of the 

MCMC chains. Figures 4.11 – 4.14 show the BGR plots for the cµ , 2σ , λ , and θ  

parameters. To assess convergence using a BGR plot, the red line in the BGR plot should 

level off and should have a value of one once the three chains are drawing samples from 

the same posterior distribution. A rule of thumb for the red line is that if the value is less 

than 1.05 it is taken to be convergence to one. Recall from Section 1.2.3 that the BGR 

diagnostic is calculating the widths of credible sets two different ways. The width of each 
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MCMC chain is calculated. Using the width for each chain, an average width is 

calculated. The widths are also calculated after the parallel Markov chains are pooled 

together to form one sample set. As the Markov chains converge to drawing samples 

from the same posterior distribution, the value of the widths calculated by the two 

different methods should approach the same number. The ratio of these two width values 

is calculated. This ratio should approach one as the parallel Markov chains converge to 

drawing samples from the same posterior distribution. The red line in the BGR plot is a 

plot of this ratio as the number of MCMC iterations increases. The blue and green lines in 

the BGR plot should come together and level off to a constant value. The value at which 

the blue and green lines level off does not matter; it is only important that they come 

together and level off to a constant value as the number of iterations increases. The 

widths calculated using the two different methods are normalized and plotted in the BGR 

plot as the blue and green lines. Thus, the blue and green lines coming together and 

leveling off to a constant value in the plot show that the widths of the credible sets are 

stabilizing and that convergence to the posterior distribution may have been reached. 

The BGR plots for all four parameters show that after about 20,000 iterations the 

red line has reached a value of one, and the blue and green lines have come together and 

leveled off to a constant value. Thus, for this example based on the history plots and BGR 

plots, it has been determined that the MCMC chains have converged to the posterior 

distribution by 20,000 iterations. That means the samples drawn after 20,000 iterations 

can be used to calculate statistics and predict response values using the surrogate model. 

The iterations before convergence in distribution has been achieved are discarded, and 

only the iterations after convergence are used for calculating statistics and plotting 

posterior distributions. The samples that are discarded are referred to as burn-in when 

performing a Bayesian analysis using MCMC. 
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Figure 4.11 BGR Plot for cµ  

 

Figure 4.12 BGR Plot for 2σ  
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Figure 4.13 BGR Plot for λ  

 

Figure 4.14 BGR Plot for θ  

Recall that a total of 100,000 iterations were run and that the first 20,000 

iterations were discarded as burn-in. This leaves 80,000 iterations for each of the three 
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parallel chains that can be used to calculate statistics and plot distributions. The 

remaining iterations from the three chains are pooled together to give a total of 240,000 

samples from the posterior distribution to use for inference. Table 4.3 gives the posterior 

mean, standard deviation, and the 95% credible set using the 240,000 samples. If the λ  

parameter is considered, the posterior mean of λ  is 0.0324 and the standard deviation of 

λ  is 0.0107. The 95% credible set for λ  is [0.0176, 0.0588] , which means that, for the 

priors and the 25 DoE samples used to fit the MBKG model, there is 95% posterior 

probability that the true λ  is between 0.0176 and 0.0588. From Table 4.1, the 95% 

interval for the prior distribution of λ  was [0.05,1.20] . Thus, the posterior distribution is 

much narrower than the prior distribution as seen by the 95% credible set of the posterior 

distribution. This means that the 25 DoE samples provided a large amount of information 

about what the true value of λ  should be and shrank the uncertainty of the value of λ  

considerably as is reflected in the posterior 95% credible set. Similarly, for the three 

parameters cµ , 2σ , and θ , Table 4.3 shows that the 95% credible set is rather narrow 

compared to the 95% intervals for the prior distributions given in Table 4.1. Overall, it 

can be concluded that the 25 DoE samples provided a large amount of information about 

what the true value of the unknown parameters are and shrank the uncertainty in all the 

unknown parameters. 

Table 4.3 Posterior Statistics for Unknown Parameters Using 25 DoE Samples 

Unknown 
Parameter Mean Standard 

Deviation 95% Credible Set 

cµ  –3.019e –5 0.0761 –0.1510 0.1507 
2σ  4.5542 1.0685 2.9146 7.0660 

λ  0.0324 0.0107 0.0176 0.0588 
θ  0.1968 0.0432 0.1516 0.3118 
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The mean predicted response value given by the MBKG surrogate model, the true 

function, and the 25 DoE samples are shown in Figure 4.15. The true function without 

noise is shown as the red curve, the 25 DoE samples are shown as the black asterisks, and 

the mean predicted response value is shown as the blue curve. The figure shows that the 

MBKG surrogate model gives a much better fit to the true function than the ordinary 

Kriging surrogate model did in Figure 4.2. 

Figure 4.16 shows the 95% credible set without noise, the 95% credible set with 

noise in addition to the mean predicted response, the true function, and the 25 DoE 

samples. The 95% credible set without noise is shown by the green curves in Figure 4.16. 

The meaning of the 95% credible set without noise gives the band in which there is 95% 

probability that the true function lies. The 95% credible set with noise is shown by the 

pink dashed curves in Figure 4.16. The meaning of the 95% credible set with noise gives 

the band in which there is 95% probability that the noisy response values given by Eq. 

(4.3) lie. 

 

Figure 4.15 MBKG Fit of Eq. (4.1) Using 25 DoE 
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As shown in Figure 4.16, the 95% credible set without noise (green curves) does 

in fact contain the true function (red curve). Also, the 95% credible set with noise (pink 

dashed curves) does in fact contain both the true function and the 25 DoE sample points. 

However, it is noted that both the 95% credible sets with and without noise are rather 

wide. This is a direct measure and reflection of the uncertainty that exists in the MBKG 

surrogate model. In order to decrease the uncertainty in the MBKG surrogate model and 

therefore narrow the 95% credible sets, more DoE samples would need to be added. 

To demonstrate how the 95% credible sets narrow with more DoE samples, 25 

additional DoE samples were uniformly added to the initial 25 DoE samples, and the 

MBKG surrogate model was refitted using 50 DoE samples and the same priors as 

before. Figure 4.17 shows the fit of the new MBKG surrogate model: the red curve is the 

true function without noise, the black asterisks are the initial 25 DoE samples previously 

used, and the blue squares are the additional 25 DoE samples. The mean predicted 

response given by the MBKG surrogate model is the dark green curve. The 95% credible 

set without noise is shown as the light blue curves, and the 95% credible set with noise is 

shown as the black dashed curves. 
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Figure 4.16 MBKG Fit of Eq. (4.1) and 95% Credible Sets Using 25 DoE 

Figure 4.18 shows a plot of the 95% credible sets without noise when both 25 

DoE samples and 50 DoE samples are used. The figure shows how the 95% credible set 

using 50 DoE samples is in fact narrower than the 95% credible set using 25 DoE 

samples. It also shows how the credible set is narrower in some regions and wider in 

other regions. This indicates where the uncertainty in the surrogate model is smaller and 

larger in those regions, respectively. Figure 4.19 shows a plot of the 95% credible sets 

with noise when both 25 DoE samples and 50 DoE samples are used. Once again, it is 

seen how for 50 DoE samples the credible set is narrower than when 25 DoE samples are 

used. Figures 4.18 and 4.19 both show how the information in the additional 25 DoE 

samples has decreased the amount of uncertainty we have in the surrogate model. 
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Figure 4.17 MBKG Fit of Eq. (4.1) and 95% Credible Sets Using 50 DoE 

 

Figure 4.18 95% Credible Sets without Noise 
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Figure 4.19 95% Credible Sets with Noise 

Table 4.4 gives the posterior mean, the standard deviation, and the 95% credible 

set for the four unknown parameters of the MBKG surrogate model that was fitted using 

50 DoE samples. Note that 240,000 MCMC samples were used to calculate the statistics. 

Comparing the standard deviations in Table 4.3 to those in Table 4.4, it can be seen that 

the posterior standard deviations are smaller when 50 DoE samples were used. Also, 

comparing the 95% credible sets in the two tables shows that the credible sets when 50 

DoE samples were used are smaller, e.g., the lower and upper bounds of the 95% credible 

set for cµ  were both reduced by a little more than half. The smaller posterior standard 

deviations and narrower 95% credible sets both show how the additional 25 DoE samples 

provided more information and reduced the overall uncertainty in the MBKG surrogate 

model. Adding more DoE samples would continue to add more information to the 

MBKG surrogate model and thus continue to reduce the posterior standard deviation and 

shrink the 95% credible sets further. 

 

 

 



www.manaraa.com

  72 
 

Table 4.4 Posterior Statistics for Unknown Parameters Using 50 DoE Samples 

Unknown 
Parameter Mean Standard 

Deviation 95% Credible Set 

cµ  4.6847e –5 0.0326 –0.0642 0.0643 
2σ  3.1863 0.5890 2.2301 4.5341 

λ  0.0169 0.0038 0.0110 0.0258 
θ  0.1880 0.0328 0.1513 0.2779 

 

 

4.3 Two-Dimensional Mathematical Examples 

4.3.1 First 2-D Mathematical Example 

This section demonstrates fitting two different mathematical functions [Lee et al. 

2011] that are two-dimensional and contain noise using the MBKG surrogate modeling 

method. The first function without noise, referred to as ( )1G x , is defined as 

 
 

( )
2

1 2
1 1

20
X XG = −x   (4.5) 

where 1X  and 2X  are the two variables. For this example the two variables are correlated 

to each other by Clayton copula with a correlation coefficient of 0.5. Because of this 

correlation, the domain of interest for this example forms the raindrop shape seen in later 

figures. For this mathematical example, the noise is generated using a normal distribution 

with zero mean and a standard deviation of 0.1. The noise, ε , is generated as realizations 

from the distribution, which is expressed as 

 
 ( )2~ 0,0.1Nε   (4.6) 

 

 



www.manaraa.com

  73 
 

The response values with noise are then calculated as a summation of the true 

response value without noise given by Eq. (4.5) and a realization of ε . This is expressed 

as 
 

1( )i i iy G ε= +x   (4.7) 

where iy  is the thi  response value with noise, ix  is the thi  DoE sample point, and iε  is 

the thi  realization of noise. 

The red surface in Figure 4.20 shows a 3-D plot of Eq. (4.5) for the domain of 

interest for 1X  and 2X  for this example. Also shown in the figure as the light blue dots 

are the 25 DoE samples used for fitting the MBKG surrogate model. This example is 

going to focus on fitting an MBKG surrogate model to Eq. (4.7), keeping in mind the 

overall objective of carrying out confidence-based RBDO. Recall from Section 2.2 that 

the RBDO problem is formulated such that the failure is defined as response values 

greater than zero. The threshold value of zero of the function is referred to as the limit 

state. Figure 4.21 shows a contour plot of the true limit state, the red curve, for Eq. (4.5) 

in the domain of interest. The 25 DoE samples are shown as the red asterisks in the 

figure. 

The prior parameter values used for fitting the MBKG surrogate model to Eq. 

(4.5) are shown in Table 4.5. Note that, because this is a two-dimensional problem, there 

are two θ  parameters to be estimated. The prior parameter values for this example are 

actually the same as those used for the previous example. This is because these priors are 

relatively non-informative and thus are applicable for this example as well. 
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Figure 4.20 Surface Plot of Eq. (4.5) and 25 DoE Samples 

 

 

Figure 4.21 Contour Plot of True Limit State Function for Eq. (4.5) and 25 DoE Samples 
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Table 4.5 Prior Parameter Values for Fitting Eq. (4.5) 

Unknown 
Parameter 

Prior 
Distribution Parameter 1 Parameter 2 95% Interval 

cµ  Normal 0pµ =  2 0.5pσ =  1.39−  1.39  
2σ  Inverse-Gamma 8.25σα =  72.5σβ =  4.91 20.04  

λ  Inverse-Gamma 1.9548λα =  0.2747λβ =  0.05  1.20  

1θ   Uniform 
1

0.15aθ =  
1

5bθ =  0.27  4.88  

2θ  Uniform 
2

0.15aθ =  
2

5bθ =  0.27  4.88  

 

 

The initial values for the Markov chains used for this example are given in Table 

4.6. Note that because the prior distributions are the same as those used in the example in 

the previous section, the initial values for the five unknown parameters in this example 

are the same as those in the previous section. This is because the initial values are based 

on the prior distributions. 

Table 4.6 Initial Values for Markov Chains for Fitting Eq. (4.5) 

Unknown 
Parameter 

Chain 1 
Initial Values 

Chain 2 
Initial Values 

Chain 3 
Initial Values 

cµ  0.00 –1.00 1.00 
2σ  4.00 9.00 17.0 

λ  0.06 0.50 0.80 
1θ  0.20 2.50 5.00 

2θ  0.20 2.50 5.00 

 

 

Using the prior parameters in Table 4.5 and the initial values in Table 4.6, MCMC 

was carried out to fit a MBKG surrogate model to the noisy responses given by Eq. (4.7). 

The contour plot of the limit state function, calculated using the mean of the predicted 
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response values, is shown in Figure 4.22. The true limit state function is shown as the red 

curve, and the predicted limit state function is shown as the blue curve in the figure. The 

25 DoE samples are shown as the red asterisks. 

 

Figure 4.22 MBKG Predicted Contour Plot of Limit State Function for Eq. (4.5) 

As seen in Figure 4.22, the predicted limit state by MBKG does not match 

extremely well to the true limit state function. This indicates that more DoE samples are 

required in order to improve the MBKG surrogate model and thus will improve the 

predicted limit state function given by the MBKG surrogate model. It is also easily seen 

in the figure that, out of the 25 DoE sample points, only a few of them are near the limit 

state function itself. This is another reason that the predicted limit state function is not 

very accurate. However, one thing that can be concluded from this is that adding 

additional samples near the limit state may be an efficient and effective way to improve 

the accuracy of the predicted limit state function given by the MBKG surrogate model. 

This will be discussed in more detail in the next chapter. 
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4.3.2 Second 2-D Mathematical Example 

The second two-dimensional function considered in this section is referred to as 

( )2G x  and is defined as 

 
 2

2 1 2
3

1 2
4

1 2

1 2

( ) 1 (0.9063 0.4226 6)

(0.9063 0.4226 6)

0.6(0.9063 0.4226 6)
( 0.4226 0.9063 )

G X X X
X X

X X
X X

= − + + −

+ + −

− + −
− − +

  (4.8) 

where 1X  and 2X  are the two variables. For this example the two variables are correlated 

to each other by Clayton copula with a correlation coefficient of 0.5. Because of this 

correlation, the domain of interest for this example forms the raindrop shape seen in later 

figures. For this mathematical example, the noise is once again generated using a normal 

distribution with zero mean and a standard deviation of 0.1. Thus, the noise, ε , is taken 

as realizations from the distribution in Eq. (4.6). 

The response values with noise are then calculated as a summation of the true 

response value without noise give by Eq. (4.8) and a realization of ε . This is expressed as 

 
 

2 ( )i i iy G ε= +x   (4.9) 

where iy  is the thi  response value with noise, ix  is the thi  DoE sample point, and iε  is 

the thi  realization of noise 

The red surface in Figure 4.23 shows a 3-D plot of Eq. (4.8) for the domain of 

interest for 1X  and 2X  for this example; note that this is the same domain as for ( )1G x  

in Eq. (4.5). Also shown in the figure as the light blue dots are the 25 DoE samples used 

for fitting the MBKG surrogate model. Note these are the same 25 DoE samples that 

were used for fitting Eq.(4.7). Figure 4.24 shows the contour plot of the true limit state 
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function, the red curve, for Eq. (4.8) in the domain of interest, and the red asterisks are the 

25 DoE. 

 

Figure 4.23 Surface Plot of Eq. (4.8) and 25 DoE Samples 

 

Figure 4.24 Contour Plot of True Limit State Function for Eq. (4.8) and 25 DoE Samples 
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The same prior distributions given in Table 4.5 are also used for fitting the 

MBKG surrogate model to Eq. (4.9). Because the same priors are being used, the same 

initial values for the Markov chains given in Table 4.6 are also used. Using these priors 

and initial values, MCMC was carried out to fit an MBKG surrogate model to Eq. (4.9). 

The contour plot of the limit state function, calculated using the mean of the predicted 

response values, is shown in Figure 4.25. 

 

Figure 4.25 MBKG Predicted Contour Plot of Limit State Function for Eq. (4.8) 

As seen in Figure 4.25, the predicted limit state by MBKG captures the general 

trend of the true limit state function; however, it does not accurately predict the true limit 

state function. This is an indication that more DoE samples need to be added, and the 

MBKG surrogate model refitted to give a more accurate prediction of the limit of the 

state function. Also, from the figure, it can be seen that only four of the 25 DoE samples 

are near the true limit state function. Thus, the same conclusion as for the ( )1G x  function 

has been reached: adding additional samples near the limit state may be an efficient and 
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effective way to improve the accuracy of the predicted limit state given by the MBKG 

surrogate model. The next chapter will discuss adding more DoE samples. 

 

4.3.3 A Note about the Computational Time 

For both examples presented in this section, three parallel Markov chains each 

containing 100,000 iterations were generated, giving a total of 300,000 samples being 

drawn. The concern then becomes what is the computational time for generating 300,000 

iterations. For the two examples in this section, the computational time to fit the MBKG 

surrogate model for each example was about 10 minutes, i.e., it took about 10 minutes to 

draw the 300,000 samples. The hardware and software details used for fitting this model 

are as follows. A computer with Windows 7 Enterprise with Service Pack 1, 64-bit 

operating system was used. The processor in the computer used is an Intel® Core™ i7-

2600 CPU @ 3.40GHz. The computer has 16.0 GB of RAM. Hyperthreading is enabled 

on the machine, giving a total of eight cores that can be used. All the code for the MBKG 

surrogate modeling method has been developed in MATLAB. For this example, 

MATLAB Version 8.1.0.604 (R2013a) was used. 

Because the three Markov chains are independent, they were run in parallel using 

three cores. Thus, all three parallel Markov chains for both examples were run in about 

10 minutes using three cores. The computational time for these examples seems to be 

reasonable and is expected to be similar for other examples. 
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CHAPTER 5 

SEQUENTIAL SAMPLING VIA CREDIBLE SETS 

5.1 Introduction 

The two mathematical examples presented in Section 4.3 will be used and built 

upon in the next two sections. A sequential sampling method is developed for adding 

more design of experiment (DoE) samples to further improve the modified Bayesian 

Kriging (MBKG) surrogate model by utilizing the information in the posterior credible 

sets of the MBKG surrogate model. 

Recall that the overall objective of this study is to carry out confidence-based 

RBDO using the MBKG surrogate model for problems whose responses contain noise. 

Also recall from Section 2.2 that the RBDO problem is formulated such that failure is 

defined as response values greater than zero. Thus, in order to use an MBKG surrogate 

model, the accuracy of the limit state function is of high importance because it will 

dictate the accuracy of the reliability analysis. Keep in mind that the MBKG surrogate 

model is not a deterministic surrogate model, but rather a surrogate model that produces 

posterior distributions for the MBKG parameters cµ , 2σ , λ , θ , and φ . Therefore, a 

predicted response value for a given point does not have one deterministic value but 

rather has a probability distribution that gives the probability of the predicted response 

value being in any interval. The Markov chain Monte Carlo (MCMC) samples drawn 

from the predictive distribution of the response variable can be used to estimate any 

desired characteristic of the distribution, e.g., the mean, standard deviation, and credible 

sets. The larger the standard deviation and the wider the credible set, the more uncertainty 

there is in the predicted value, i.e., more uncertainty in what the true value is. The 

probability distributions characterize this uncertainty and provide information that can be 

used to further improve the MBKG surrogate model. This section presents a sequential 
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sampling method for adding more DoE samples to the MBKG surrogate model using the 

posterior credible sets to improve the prediction of the limit state. 

 

5.2 Sequential Sampling for the First 2-D Mathematical 

Example 

Section 4.3.1 showed an example of fitting an MBKG surrogate model to a two-

dimensional problem with noise. Figure 4.22 shows that the predicted limit state (blue 

curve in Figure 4.22) did not match well to the true limit state (red curve in Figure 4.22). 

Figure 5.1 shows the contour plot of the true limit state function as the red curve, the 

MBKG predicted limit state as the blue curve, and the 400 test points as the light blue 

circles. The 400 test points are uniformly and randomly distributed in the domain. The 

response values for the 400 test points are predicted using the MBKG surrogate model 

created in Section 4.3.1 using the 25 DoE samples in Figure 4.22. Each of the 400 test 

points has a distribution of the predicted response for that test point, i.e., there are 400 

distributions of predicted responses, one for each of the 400 test points. 

As described previously, the limit state function is the key for doing a reliability 

analysis. Thus, out of the 400 test points, the ones of interest are the test points whose 

distribution of the predicted response contains the limit state, i.e., the distribution of the 

predicted response contains the value zero. Out of the 400 test points, Figure 5.2 shows 

the 134 test points whose 95% credible sets capture the value zero. These 134 test points 

are shown as the yellow-filled circles; the light blue circles are the remaining test points. 

The red asterisks are the 25 DoE samples used to fit the MBKG surrogate model. 
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Figure 5.1 Contour Plot of Limit State and 400 Test Points 

 

Figure 5.2 Test Points with 95% Credible Sets that Capture the Limit State Using 25 DoE 

The yellow-filled circles in Figure 5.2 showing the 95% credible sets that contain 

zero form a rather wide band around both the true limit state and the predicted limit state. 
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This wide band is a visualization of the amount of uncertainty we have in the predicted 

limit state. When studying Figure 5.2, it is not surprising to see that the yellow band 

contains only six out of the 25 DoE samples used to fit the MBKG surrogate model. This 

explains why the yellow band is so wide, i.e., why the uncertainty in the predicted limit 

state is so large. 

Naturally, this indicates that adding DoE samples chosen from the 134 test points 

that form the yellow band would reduce the amount of uncertainty in the limit state and 

effectively narrow the band. It is also desirable to select the additional DoE samples from 

the 134 test points such that they are as far from the existing 25 DoE samples as possible, 

as well as being far from the additional samples added. In addition to the new DoE 

samples being far from the existing samples, it is also desirable that they are at locations 

where the amount of uncertainty in the limit state is the largest. Placing the new DoE 

samples in this strategic way will provide the maximum amount of information to the 

MBKG surrogate model, requiring fewer DoE samples to be used to fit the MBKG 

surrogate model. 

To determine the locations that meet the desired requirements just described, a 

weighting system is proposed to select the new DoE samples from the 134 candidate test 

points. The first step is to calculate the distance between the test points and the existing 

25 DoE samples previously used, giving a matrix of distance values. This can be 

expressed mathematically as 

 
 for 1, ... , and 1, ... ,j i

ij test DoED i n j n= −      =       =    s t  (5.1) 

where ijD  is the distance between the thi  test point and thj  existing DoE sample, js  is 

the thj  existing DoE sample, it  is the thi  test point, testn  is the number of test points 

whose 95% credible set capture zero, and DoEn  is the number of existing DoE samples. 

For this example, 134testn =  and 25DoEn = . Once these distances are obtained, the next 
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step is to find the minimum distance from all the existing DoE samples for each test 

point. This then gives a vector of the distance between the test point and the closest 

existing DoE sample, which is expressed mathematically as 

 
 { }min for 1, ... ,i ij DoEd D j n=        =     (5.2) 

where id  is the distance between the thi  test point and the closest existing DoE sample, 

ijD  is the distance between the thi  test point and the thj  existing DoE sample as 

calculated in Eq. (5.1), and DoEn  is the number of existing DoE samples.  

The last value needed to calculate the weight is the width of the 95% credible sets 

that capture zero. This width is simply calculated as 

 
 for 1, ... ,w L U

i i i testc c c i n=  +      =     (5.3) 

where w
ic  is the width of the 95% credible set for the thi  test point, L

ic  is the lower bound 

of the 95% credible set for the thi  test point, U
ic  is the upper bound of the 95% credible 

set for the thi  test point, and testn  is the number of test points. Note that only the 95% 

credible sets that contain zero are used. Therefore the lower bound, L
ic , is always less 

than zero and upper bound, U
ic , is always greater than zero. The weight for each test 

point is then calculated as 

 
 for 1, ... ,w

i i i testw d c i n= ∗     =     (5.4) 

where iw  is the weight for the thi  test point, id  is the distance between the thi  test point 

and the closest existing DoE sample as calculated in Eq. (5.2), w
ic  is the width of the 95% 

credible set for the thi  test point as calculated in Eq. (5.3), and testn  is the number of test 

points. The test point that has the largest weight given by Eq. (5.4) is selected as the new 

DoE sample, expressed as 
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 { }max for 1, ... ,new
i testw i n=      =    s  (5.5) 

where news  is the new DoE sample selected from the testn  test points, iw  is the weight for 

the thi  test point, and testn  is the number of test points. Then news  is added to the list of 

existing DoE samples, and this selection process can be iterated until the desired number 

of new DoE samples are added. 

For this example, 20 additional DoE samples were added to the 25 initial DoE 

samples, giving a total of 45 DoE samples used to fit the MBKG surrogate model. Figure 

5.3 shows the 20 additional DoE samples added as the black squares in the figure. It can 

be seen in the figure that the samples selected are relatively uniformly spaced from each 

other as well as spaced from the existing 25 DoE samples shown as the red asterisks. 

 

Figure 5.3 Additional 20 DoE Samples 

The MBKG surrogate model was refitted using the 45 DoE samples and the same 

priors and initial values for the MCMC analysis that were used in Section 4.3.1. The 

contour plot of the limit state using the 45 DoE samples is shown in Figure 5.4 as the 
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green curve. The blue curve in the figure is the limit state given by the previous MBKG 

surrogate model that used 25 DoE samples. The red curve in the figure is the true limit 

state for Eq. (4.4). As seen in the figure, the left part of the green curve, i.e., the limit 

state using the 45 DoE samples, is a little closer to the true limit state (red curve). 

However, the right side of the green curve, i.e., the limit state using the 45 DoE samples, 

is a little farther away from the true limit state (red curve). 

 

Figure 5.4 Contour Plot of Limit State of Eq. (4.4) Using 45 DoE Samples 

Further investigation of the 45 DoE samples used to fit the MBKG surrogate 

model revealed that the noise added in Eq. (4.4) tended to be a little biased to the positive 

side. This is believed to be the reason that the predicted limit state for both the 25 DoE 

samples and 45 DoE samples seems to be consistently above the true limit state in Figure 

5.4. 

To see the overall improvement of the MBKG surrogate model using the 

additional 20 DoE samples, the response values for the same 400 test points shown in 
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Figure 5.1 were predicted using the MBKG surrogate model created using the 45 DoE 

samples. Then the 400 response values whose 95% credible sets that captured zero were 

selected again and are shown in Figure 5.5 as the small black diamonds. It is easily seen 

how the 95% credible set band formed by the small black diamonds is much narrower 

than the previous 95% credible set band formed by the yellow-filled circles. This shows 

how adding 20 DoE samples reduced the amount of uncertainty in the predicted limit 

state. 

 

Figure 5.5 Test Points with 95% Credible Sets that Capture the Limit State Using 45 DoE 

Despite the existence of bias in the DoE samples as explained earlier, the true 

limit state (red curve in Figure 5.5) is still within the 95% credible set of the limit state 

given by the MBKG surrogate model constructed using the 45 DoE samples. Further 

sequential sampling to add additional DoE samples using the same process will continue 

to improve the prediction of the limit state and reduce the width of the 95% credible set. 
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5.3 Sequential Sampling for the Second 2-D Mathematical 

Example 

5.3.1 Prior Distributions and MCMC Initial Values 

Section 4.3.2 showed an example of fitting an MBKG surrogate model to a two-

dimensional problem with noise. Figure 4.25 showed that the predicted limit state (blue 

curve in Figure 4.25) did not match well to the true limit state (red curve in Figure 4.25). 

When fitting the MBKG surrogate model in Section 4.3.2 a constant mean structure was 

used and a wide prior for the 2σ  parameter was used. As seen in Figure 4.25 the true 

limit state is highly nonlinear. Therefore, in this section, a second-order mean structure 

for the MBKG surrogate model will be used. Recall from Section 3.3.1 that using a non-

constant mean structure introduces the regression coefficients β  that need to be fitted 

when fitting the MBKG surrogate model. Thus, different prior parameter values for the 

prior distributions are needed than were used in Section 4.3.2 for this example. Table 5.1 

lists the prior parameters used for fitting the MBKG surrogate model in this section. The 

second-order mean structure is expected to absorb the trend of limit state function. 

Therefore, a slightly tighter prior for 2σ  is used than was used previously. The prior for 

the λ  parameter remains the same as it was previously. The prior for the θ  parameters 

also remains the same as previously used. Because the data used to fit the MBKG 

surrogate model is normalized as explained in Section 3.3.2, the β  coefficients are 

expected to take on small values near zero. Therefore, a noninformative prior for the β  

coefficients that has a zero mean vector and a variance of 650 for each coefficient is used. 

This gives the 95% interval for the coefficients to be 49.97± , which is expected to 

capture the β  coefficients. The initial values needed to carry out the MCMC simulation 

to fit the MBKG surrogate model are given in Table 5.2.  
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Table 5.1 Prior Parameter Values 

Unknown 
Parameter 

Prior 
Distribution Parameter 1 Parameter 2 95% Interval 

2σ  Inverse-Gamma 2σα =  2.5σβ =  0.49  10.32  
λ  Inverse-Gamma 1.9548λα =  0.2747λβ =  0.05  1.20  

iθ  Uniform 0.15aθ =  5bθ =  0.27  4.88  
β   MVN 0  650I   49.97−  49.97  

Table 5.2 Initial Values for Markov Chains 

Unknown 
Parameter 

Chain 1 
Initial Values 

Chain 2 
Initial Values 

Chain 3 
Initial Values 

2σ  1.00 3.00 6.0 
λ  0.06 0.50 0.80 

iθ  0.20 2.50 5.00 

iβ   0.00 -50.0 50.0 

 

 

5.3.2 Sequential Sampling 

The sequential sampling process using the 95% credible set that was presented in 

Section 5.2 will be used for this example as well. Out of the 400 test points predicted 

using the MBKG surrogate model, Figure 5.6 shows the 298 test points whose 95% 

credible sets capture the value zero. These 298 test points are shown as the yellow-filled 

circles; the light blue circles are the remaining 102 test points whose 95% credible sets 

did not capture zero. The red asterisks are the 25 DoE samples used to fit the MBKG 

surrogate model. The red curve is the true limit state for Eq. (4.6). The blue curve is the 

predicted limit state given by the MBKG surrogate model. It is clearly seen that the mean 

of the predicted limit state does not match well to the true limit state in the top portion. It 

does, however, match well for the left part of the limit state. 
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The large number of test points that have a 95% credible set that captures zero 

indicates that there is a large amount of uncertainty in the MBKG surrogate model about 

where the true limit state is. Recalling from Figure 4.23, which showed the 3-D surface 

plot of Eq. (4.6), the function is relatively flat in the region near the limit state and then 

suddenly drops off. This explains why there is so much uncertainty in the MBKG 

surrogate model about where the limit is compared to the example in the previous 

section. Using the same sequential sampling procedure described in the previous section, 

20 additional DoE samples are selected from the 298 test points to be used to improve the 

MBKG surrogate model. The 20 additional DoE samples are shown as the black squares 

in Figure 5.7. 

The MBKG surrogate model was refitted using the 45 DoE samples, and the same 

priors and initial values listed in Section 5.3.1 were used for the MCMC simulation. The 

contour plot of the limit state using the 45 DoE samples is shown in Figure 5.8 as the 

green curve. The blue curve in the figure is the limit state given by the previous MBKG 

surrogate model that used 25 DoE samples. The red curve in the figure is the true limit 

state for Eq. (4.6). Figure 5.8 shows that the left part of the limit state (green curve) still 

matches as closely to the true limit state (red curve) as it did previously. It is also seen 

that the top part of the limit state (green curve) has improved and is closer to the true 

limit state than it was previously. The figure also shows that, even with the 45 DoE 

samples, only a few are actually near the true limit state. 

To see the overall improvement of the MBKG surrogate model using the 

additional 20 DoE samples, the response values for the same 400 test points were 

predicted using the MBKG surrogate model created using the 45 DoE samples. Then the 

400 response values whose 95% credible sets that captured zero were selected again and 

are shown in Figure 5.9 as the small black diamonds. It is easily seen how this 95% 

credible set band formed by the small black diamonds did shrink in on both sides of the 

true limit state compared to the previous 95% credible set band formed by the yellow-
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filled circles. This shows how adding 20 DoE samples reduced the amount of uncertainty 

in the predicted limit state. From the figure it can be seen that the uncertainty in the lower 

left part of the limit state is rather small; this is reflected by the narrow 95% credible set 

in that area. However, the uncertainty in the upper top part of the limit state is still rather 

large, as reflected by the wider 95% credible set in that area. This indicates that 

additional DoE samples are needed to improve the MBKG surrogate model. Further 

sequential sampling using the same process is continued to improve the prediction of the 

limit state and reduce the width of the 95% credible set. 

 

Figure 5.6 Test Points with 95% Credible Sets that Capture the Limit State Using 25 DoE 
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Figure 5.7 Additional 20 DoE Samples Shown as Black Squares 

 

Figure 5.8 Contour Plot of Limit State Using 45 DoE Samples 
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Figure 5.9 Test Points with 95% Credible Sets that Capture the Limit State Using 45 DoE 

In Figure 5.9 there are 154 test points, shown as the black diamonds that have 

95% credible sets that capture zero. Using these 154 test points, an additional 20 DoE 

samples are selected using the same sequential sampling method as before. The 

additional 20 DoE samples selected are shown in Figure 5.10 as the pink circles. The 

MBKG surrogate model was refitted using the 65 DoE samples. The contour plot of the 

predicted limit state using the 65 DoE samples is shown in Figure 5.11 as the blue curve. 

It is seen that the predicted limit (blue curve) is a close match to the true limit except for 

the top portion, which is a better fit than it was using the 45 DoE samples as shown by 

the green curve in Figure 5.8. The response values of the 400 test points were predicted 

using the MBKG surrogate model created using the 65 DoE samples. The 400 response 

values whose 95% credible sets captured zero were selected and are shown in Figure 5.12 

as the light blue plus signs. It is seen that the 95% credible set did shrink, but not 

significantly. 
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Figure 5.10 Additional 20 DoE Samples Shown as Pink Circles 

 

Figure 5.11 Contour of Limit State Using 65 DoE Samples 
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Figure 5.12 Test Points with 95% Credible Sets that Capture the Limit State Using 65 
DoE Samples Shown as the Light Blue Plus Signs 

Using the same sequential sampling procedure, another 20 DoE were selected 

from the 112 test points whose 95% credible sets captured zero. Figure 5.13 shows the 

additional 20 DoE as the blue diamonds. Figure 5.13 also shows the predicted limit state 

given by the MBKG surrogate created using the 85 DoE samples as the green curve. It is 

seen that limit state did improve a little but did not change significantly. Figure 5.14 

shows the test points that have 95% credible sets capturing zero for the MBKG surrogate 

created using the 85 DoE samples; they are shown as the black crosses in the figure. It 

can be seen that the credible set has shrunk when compared to the credible set given by 

the 65 DoE samples shown in Figure 5.12. A final set of 20 DoE samples was added to 

give a total of 105 DoE samples using the same sequential sampling method. The 

additional 20 DoE are shown in Figure 5.15 as the green asterisks. It is seen that the 20 

additional DoE closely surround the true limit state and also that 19 of them are in the top 

part where the credible set is wider. The predicted limit state given by the MBKG 

surrogate created using all 105 DoE is also shown in Figure 5.15 as the blue curve. It can 
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be seen that the curve appears to visually match the true limit state exactly except for at 

the top right tip. The test points with 95% credible sets capturing zero are shown in 

Figure 5.16 as the red circles. As seen in the figure, the credible set has shrunk more, thus 

reflecting the accurate prediction of the true limit state. 

This section demonstrated how the developed sequential sampling method 

systemically reduces the uncertainty in the predicted limit and therefore reduces the 95% 

credible set of the limit state. The next section will show how the sequential sampling 

method reduces the uncertainty in the predicted probability of failure. 

 

Figure 5.13 Additional 20 DoE Samples as Blue Diamonds and Contour of Limit State 
Using 85 DoE Samples as the Green Curve 
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Figure 5.14 Test Points with 95% Credible Sets that Capture the Limit State Using 85 
DoE Samples Shown as Black Crosses 

 

Figure 5.15 Additional 20 DoE Samples as Green Asterisk and Contour of Limit State 
Using 105 DoE Samples as the Blue Curve 
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Figure 5.16 Test Points with 95% Credible Sets that Capture the Limit Statue Using 105 
DoE Samples Shown as the Red Circles 

5.3.3 Distribution of Probability of Failure for Small Noise 

The previous section demonstrated how the predicted limit state converged to the 

true limit state using the developed sequential sampling method. It was also shown how 

the uncertainty of the predicted limit state was decreased by using the developed 

sequential sampling method. This was demonstrated by showing how the 95% credible 

set of the predicted limit state continued to shrink and become narrower as sequential 

sampling was performed. Recall that the limit state is used to predict the probability of 

failure. Because of the uncertainty in the predicted limit state, this naturally leads to 

uncertainty in the predicted probability of failure when using the predicted limit state. 

When using Bayesian methods, all of the uncertainty about a predicted value is 

reflected in the posterior distribution of the predicted value. Thus, when predicting the 

probability of failure using the MBKG surrogate model, the probability of failure is not a 

deterministic value, but rather a distribution. The posterior distribution of the probability 

of failure captures all of the uncertainty in the probability of failure prediction. This 
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includes all of the uncertainty in the MBKG surrogate model, i.e., the uncertainty of the 

estimated parameters in the MBKG surrogate model and the uncertainty in the predicted 

limit state. This section will demonstrate how the distribution of the probability of failure 

converges as the sequential sampling method developed in Section 5.2 is used to improve 

the predicted limit state. 

The MBKG surrogate models created using the sequential sampling method will 

be used in this section to predict the probability of failure. For the study of the 

distribution of the probability of failure, two different concepts will be shown. This 

section will show how the distribution of the probability of failure converges when using 

the developed sequential sampling method. The next section will show how the 

distribution converges for three different noise levels in the response function. 

The response function used in this section is the same 2G  function given in Eq. 

(4.8) repeated below as Eq. (5.6). 

 
 2

2 1 2
3

1 2
4

1 2

1 2

( ) 1 (0.9063 0.4226 6)

(0.9063 0.4226 6)

0.6(0.9063 0.4226 6)
( 0.4226 0.9063 )

G X X X
X X

X X
X X

= − + + −

+ + −

− + −
− − +

 (5.6) 

Noise is added to the response function as shown in Eq. (5.7) 

 
 

2 ( )i i iy G ε= +x  (5.7) 

where iε  is generated as a realization from a normal distribution with zero mean and 

standard deviation of εσ  as shown in Eq. (5.8). 

 
 ( )2~ 0,N εε σ  (5.8) 
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Three different noise levels will be considered and will be referred to as small, 

medium, and large noise. The noise levels, the standard deviation for each noise level, 

and the 95% interval for each noise distribution is given in Table 5.3. 

Table 5.3 The Three Noise Levels Used 

Noise Level eσ   95% Interval 
Small 0.01 0.0196−  0.0196  

Medium 0.05 0.098−  0.098  
Large 0.10 0.196−  0.196  

 

 

For this example, the two random variables 1X  and 2X  are correlated to each 

other with a Clayton Copula with a correlation coefficient of 0.5. The marginal 

distributions of both random variables are given in Eq. (5.9). To calculate the probability 

of failure, Monte Carlo points are drawn from the joint distribution of 1X  and 2X . 

 
 ( )

( )

2
1

2
2

X ~ 5.19,0.3

X ~ 0.74,0.3

N

N
 (5.9) 

This section shows how using a different number of DoE samples affects the 

distribution of the probability of failure for the small noise case. Figures 5.17 – 5.21 show 

the posterior distributions of the probability of failure using 25, 45, 65, 85, and 105 DoE 

samples, respectively. To predict the probability of failure, 10,000 Monte Carlo points 

were used to predict the probability of failure at each MCMC iteration; a total of 300,000 

MCMC iterations were used for this example. Recall from Figure 5.6 how the 95% 

credible set was really wide for the limit state, indicating that the uncertainty in the limit 

is large. This large uncertainty is carried through and is included in the uncertainty of the 
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probability of failure, as shown in Figure 5.17. The distribution of the probability of 

failure is extremely wide, ranging between roughly 0.0% to just under 90%; thus, it is 

clear that the amount of uncertainty in the probability of failure is rather large. After 

adding another 20 DoE samples and using a total of 45 DoE samples to fit the MBKG 

surrogate model, the amount of uncertainty in the limit state—and therefore the amount 

of uncertainty in the probability of failure—shrinks. This is shown by the distribution of 

the probability of failure in Figure 5.18. The distribution is not as wide and the left tail of 

the distribution is not nearly as fat as it was when using only 25 DoE samples. 

Continuing to add 20 DoE samples using the sequential sampling method continues to 

shrink the width of the distribution of the probability of failure. Figure 5.21 shows the 

distribution of the probability of failure using 105 DoE samples, and the distribution is 

significantly narrower than when only 25 DoE samples are used.  

Table 5.4 shows a summary of the statistics for the probability of failure using the 

different numbers of DoE samples. The table lists the mean value, the standard deviation, 

and the 95% credible set for the probability of failure. It can be seen that the 95% 

credible set using 25 DoE samples is wide, with a lower bound of 3.94% and an upper 

bound of 71.82%. This means that there is 95% probability that the true probability of 

failure is in the interval [3.94%, 71.82%]. It is seen in the table how the 95% credible set 

continues to shrink as more DoE samples are added. Using the 105 DoE samples, the 

95% credible set of the probability of failure now has a lower bound of 43.75% and an 

upper bound of 51.73%. This means that there is 95% probability that the true probability 

of failure is in the interval [43.75%, 51.73%]. The true probability of failure of Eq. (5.6) 

without noise is 48.4719%, as shown in Table 5.4. The 95% credible sets in the table 

capture the true probability of failure. Also, the mean value of the probability of failure 

approaches the true value. 

The next section will look at how the level of noise in the response function 

affects the posterior distribution of the probability of failure. 
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Figure 5.17 Posterior Distribution of Probability of Failure Using 25 DoE Samples 

 

Figure 5.18 Posterior Distribution of Probability of Failure Using 45 DoE Samples 
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Figure 5.19 Posterior Distribution of Probability of Failure Using 65 DoE Samples 

 

Figure 5.20 Posterior Distribution of Probability of Failure Using 85 DoE Samples 
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Figure 5.21 Posterior Distribution of Probability of Failure Using 105 DoE Samples 

Table 5.4 Probability of Failure Statistics Using Different 
Numbers of DoE Samples 

# DoE 
Samples Mean Std. 95% Credible Set 

25 40.6553 % 19.3437 % 3.94 % 71.82 % 
45 43.7836 % 10.7319 % 18.41 % 60.24 % 
65 47.2684 % 5.1559 % 36.26 % 56.63 % 
85 47.6843 % 2.7809 % 41.97 % 52.92 % 
105 47.8461 % 2.0249 % 43.75 % 51.73 % 
True 48.4719 % N/A N/A N/A 

 

 

5.3.4 Distribution of the Probability of Failure for Small, 

Medium, and Large Noise 

This section will show how the posterior distribution of the probability of failure 

changes for different levels of noise when using the developed sequential sampling 
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method. The plots of the posterior distribution of the probability of failure for medium 

and large noise look similar to those for the small noise. Thus, they are not shown here. 

Instead, tables showing the statistics that summarize the posterior distributions are 

presented. Tables 5.5 – 5.7 show the statistics of the posterior distribution of the 

probability of failure for the small, medium, and large noise levels, respectively. Note 

that Table 5.5 is the same as Table 5.4 and is just repeated for convenience. When 

studying the tables, it is evident that the credible sets shrink as more DoE samples are 

added for all three noise levels. It should be noted that the 25 initial DoE samples used 

for the small, medium, and large noise cases are different. This is because the initial 

uniform samples are randomly generated. When comparing the 95% credible sets for the 

medium and large noise cases, it is evident that they are similar. The credible sets for 

large noise are slightly larger than they are for medium noise, which is expected. 

The 95% credible sets for the small noise are slightly larger than they are for the 

medium and large noise. It was found that the 25 initial DoE samples were not as uniform 

in the domain for the small noise as they were for the medium and large noise. Because 

of this, there is less information available when fitting the MBKG surrogate model, i.e., 

there is more uncertainty in the MBKG surrogate model. Therefore, the 95% credible sets 

are expected to be a little wider for the small noise for the same number of DoE samples 

than they are for the medium and large noise. 

The Bayesian definition of the 95% credible sets for the probability of failure is 

that, given the information we have, i.e., the DoE samples and prior information, there is 

95% probability that the true probability of failure is within the bounds of the 95% 

credible set. For this example, it is seen that the true probability of failure is in fact within 

the 95% credible sets for all noise levels considered. 

The next chapter develops a method that uses the distribution of the probability of 

failure to carry out confidence-based reliability-based design optimization to obtain a 

reliable design with confidence. 
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Table 5.5 Probability of Failure Statistics for Small Noise 

# DoE 
Samples Mean Std. 95% Credible Set 

25 40.6553 % 19.3437 % 3.94 % 71.82 % 
45 43.7836 % 10.7319 % 18.41 % 60.24 % 
65 47.2684 % 5.1559 % 36.26 % 56.63 % 
85 47.6843 % 2.7809 % 41.97 % 52.92 % 
105 47.8461 % 2.0249 % 43.75 % 51.73 % 
True 48.4719 % N/A N/A N/A 

Table 5.6 Probability of Failure Statistics for Medium Noise 

# DoE 
Samples Mean Std. 95% Credible Set 

25 42.1873 % 16.4255 % 9.26 % 69.69 % 
45 45.3714 % 8.5311 % 25.91 % 59.11 % 
65 47.0987 % 4.0376 % 38.37 % 54.19 % 
85 48.1298 % 2.2939 % 43.31 % 52.35 % 
105 48.0290 % 1.8029 % 44.3 % 51.37 % 
True 48.4719 % N/A N/A N/A 

Table 5.7 Probability of Failure Statistics for Large Noise 

# DoE 
Samples Mean Std. 95% Credible Set 

25 43.4495 % 16.1065 % 10.4 % 70.19 % 
45 45.1517 % 8.5012 % 25.87 % 58.97 % 
65 46.5778 % 4.1338 % 37.6 % 53.84 % 
85 47.0866 % 2.6179 % 41.47 % 51.8 % 
105 47.4154 % 2.3101 % 42.44 % 51.51 % 
True 48.4719 % N/A N/A N/A 
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CHAPTER 6 

CONFIDENCE-BASED RELIABILITY-BASED DESIGN 

OPTIMIZATION VIA POSTERIOR DISTRIBUTIONS 

6.1 Introduction 

The previous chapter demonstrated how the posterior distribution of the 

probability of failure converged using the developed sequential sampling method. This 

chapter is going to develop a confidence-based reliability-based design optimization 

(RBDO) method that uses the posterior distribution of the probability of failure to carry 

out optimization. As explained in the previous chapter, the posterior distribution of the 

probability of failure contains all of the uncertainty about the probability of failure. The 

goal of developing a confidence-based RBDO method is to use the uncertainty in the 

optimization process in order to obtain a reliable design with a user-specified confidence 

level. 

The next section will present the formulation of the confidence-based RBDO 

method. The following sections will then present examples using the confidence-based 

RBDO method. 

 

6.2 Confidence-Based Reliability-Based Design 

Optimization Formulation 

Recall from Section 2.4 that the constraint formulation for RBDO is that the 

probability of failure should be less than or equal to the target probability of failure as 

shown in Eq. (6.1), where FP  is the probability of failure for the current design and TAR
FP  

is the target probability of failure. When using the MBKG surrogate model, we do not 

know the true probability of failure. However, we do have the posterior distribution of the 

probability of failure. The mean value of the probability of failure could be used as a 

point estimate of the true probability of failure. That point estimate could then potentially 
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be used to carry out RBDO. This, however, could lead to an optimum design that does 

not meet the target probability of failure because there is uncertainty about what the true 

probability of failure is. 

 
 TAR

F FP P≤  (6.1) 

It is desirable to take the uncertainty of the probability of failure into 

consideration for optimization. The posterior distribution of the probability of failure can 

be used to do exactly this. Figure 6.1 shows a simple representation of the posterior 

distribution of the probability of failure. Note that this is just for illustration proposes and 

the actual posterior distribution of the probability of failure may not be symmetric as was 

seen in Section 5.3. In Figure 6.1, the green line represents where the target probability of 

failure, TAR
FP , is located on the axisx − . The gray area in the figure is the probability that 

the probability of failure is less than or equal to the target probability of failure as 

expressed in Eq. (6.2) 

 

Figure 6.1 Posterior Distribution of the Probability of Failure 
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 ( )TAR
F FArea P P P= ≤  (6.2) 

where Area  is the gray shaded area in Figure 6.1, ( )P •  is a probability measure, FP  is 

the probability of failure, and TAR
FP  is the target probability of failure. For confidence-

based RBDO, a target confidence level, denoted as . .C L , is defined. For example, if 

. . 90%C L = , the goal is to find a design such that there is 90% probability that the 

probability of failure is less than or equal to the target probability of failure. If this 

condition is satisfied, then the grey shaded area in Figure 6.1 will be at least equal to 

. .C L , expressed mathematically as 

 
 ( ) . .TAR

F FArea P P P C L= ≤ ≥  (6.3) 

where . .C L  is the target confidence level, e.g., 90%. Equation (6.3) states that the 

probability of the probability of failure being less than or equal to the target probability of 

failure is greater than or equal to the target confidence level . .C L  

Now take for example the posterior distribution of the probability of failure for 

the current design shown in Figure 6.2. If the target confidence level is . . 80%C L = , then 

the gray shaded area in Figure 6.2 is equal to 20%. The quantile value for . . 80%C L =  is 

determined from the posterior distribution to be ( . .) 7.3%C L
FP =  as shown in Figure 6.2. 

This means that there is 80% probability that the true probability of failure is less than or 

equal to 7.3%. Now take for the same current design and posterior distribution of the 

probability of failure. If the target confidence level is 90% as shown in Figure 6.3, then 

the gray shaded area is equal to 10%. Thus, the quantile value is ( . .) 12.4%C L
FP =  as shown 

in Figure 6.3. This means that for the same current design there is 90% probability that 

the true probability of failure is less than or equal to 12.4%. The goal of the confidence-

based RBDO method is to find a design point such that quantile value ( . .)C L
FP  is less than 

or equal to the target probability of failure TAR
FP . This would mean that there is . .C L  

probability that the true probability of failure is less than or equal to ( . .)C L
FP . 
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Figure 6.2 Posterior Distribution of the Probability of Failure with . . 80%C L =  

 

Figure 6.3 Posterior Distribution of the Probability of Failure with . . 90%C L =  

Using the posterior distribution of the probability of failure, the constraint used 

for confidence-based RBDO is expressed in Eq. (6.4) 
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 ( . .)C L TAR
F FP P≤  (6.4) 

where ( . .)C L
FP  is the probability of failure quantile value at the target confidence level, 

( . .)C L  denotes the target confidence level, and TAR
FP  is the target probability of failure. 

The constraint states that the probability of failure quantile value for the target confidence 

level . .C L  should be less than or equal to the target probability of failure TAR
FP . Figure 6.4 

shows a diagram of the confidence-based RBDO constraint in Eq. (6.4). In the figure the 

blue curve is a representation of the posterior distribution of the probability of failure. 

The green line in the figure is the target probability of failure, denoted as TAR
FP . The gray 

shaded area in the figure has an area equal to 1 . .C L− ; e.g., if the target confidence level 

is 90%, then the gray area would be 10% of the area under the blue curve. The red line in 

the figure is the value of the probability of failure at which the gray shaded area is equal 

to 1 . .C L− , i.e., the quantile value for . .C L  denoted as ( . .)C L
FP  in the figure. As seen in the 

figure, the constraint given in Eq. (6.4) is violated because ( . .)C L TAR
F FP P> . During the 

confidence-based RBDO optimization process, the optimization algorithm would update 

the design so that the posterior distribution of the probability of failure would move to the 

left and the red line in Figure 6.4 meets the green line or is to the left of the green line, as 

shown by the arrow in the figure, in order to satisfy the constraint in Eq. (6.4). 
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Figure 6.4 Constraint Diagram for Eq. (6.4) 

The mathematical formulation for confidence-based RBDO is expressed as 

 
 

( . .)

minimize Cost( )

, 1, ,
subject to

, and
i i

d r

C L TAR
F F c

n nL U

P P i n

                                        

 ≤   =


≤ ≤  ∈   ∈

d

d d d d X



 

 (6.5) 

where { } [ ]{ }TT
i id E X= =d , 1 to di n=    is the design vector, [ ]E •  is the expectation 

operator, { }T
iX=X  is the vector of random variables, and cn , dn , and rn  are the number 

of constraints, design variables, and random variables, respectively. The constraint in Eq. 

(6.4) can be rewritten in normalized form to be used as an optimization constraint and is 

expressed as 

 
 ( . .)

1 0
C L

F
TAR

F

Ph
P

= − ≤  (6.6) 
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To use a sensitivity-based optimization algorithm to find the solution to Eq. (6.5), 

the sensitivity of the constraint in Eq. (6.6) is needed. The sensitivity of this constraint can 

be written as 

 
 ( . .)1 C L

F
TAR

j F j

h P
d P d

∂ ∂
=

∂ ∂
 (6.7) 

where jd  is the thj  design variable, ( . .)C L
FP   is the probability of failure quantile value at 

the target confidence level . .C L  , and TAR
FP  is the target probability of failure. It can be 

seen that the partial derivative on the right-hand side of Eq. (6.7) is the partial derivative 

of the probability of failure with respect to the design variable when the probability of 

failure is equal to ( . .)C L
FP . Recall that the definition of the design variables in Eq. (6.5) are 

the mean values of the random variables X . Therefore, the partial derivative on the right-

hand side of Eq. (6.7) can be rewritten as 

 
 

( . .)C L
F F

F

j P P

P
µ

=

∂
∂

 (6.8) 

where [ ]j jE Xµ =  is the mean value of the random variable jX , FP  is the probability of 

failure, and ( . .)C L
FP  is the probability of failure quantile value at the target confidence level 

. .C L  Upon studying the partial derivative in Eq. (6.8), it can be seen that it takes on the 

same form as Eq. (2.21) and thus can be calculated using the same score function method 

presented in Section 2.5.2 [Rubinstein and Shapior 1993; Rahman 2009; Lee et. al. 2011; 

Zhao 2011]. By gathering all of these pieces together, the optimization problem in Eq. 

(6.5) can now be solved. The next section will present an example carrying out 

confidence-based RBDO. 
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6.3 A 2-D Mathematical Example 

6.3.1 Problem Definition 

A two-dimensional mathematical confidence-based RBDO problem is formulated 

as 
 

( . .)

2 2

2 2
1 2 1 2

2
1 2

1

2 1

minimize Cost( )

, 1, 2, 3
subject to

, and
where

( 10) ( 10)( )
30 120

( ) 1
20
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(6.9) 

As seen in Eq. (6.9), the target confidence level defined for this example is 90%, 

and the target probability of failure is defined to be 2.275%. The general problem 

definition for this example has random noise added to the true response value. Random 

noise is defined in the same way as it was in Section 5.3.3 and also uses the three 

different noise levels listed in Table (5.3). Table (5.3) is repeated below as Table 6.1. 
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Table 6.1 The Three Noise Levels Used 

Noise Level eσ  95% Interval 
Small 0.01 0.0196−  0.0196  

Medium 0.05 0.098−  0.098  
Large 0.10 0.196−  0.196  

 

 

6.3.2 Optimization Results for Small Noise Level 

This section presents the optimization results for the optimization problem 

defined in Eq. (6.9) for using small noise, i.e., 2 0.01εσ = . The MBKG surrogate models 

used in solving this problem performed sequential sampling to refine the limit state and 

reduce the uncertainty in the probability of failure. The MBKG surrogate models started 

out using 25 initial DoE samples and did four sequential sampling iterations so that a 

total of 105 DoE samples were used to create the MBKG surrogate models. The MBKG 

surrogate models were then used to generate the posterior distribution of the probability 

of failure, which was then used as described in Section 6.2 to calculate the constraint 

information needed for optimization. 

The optimization history for the first constraint is shown in Table 6.2, and the 

optimization history for the second constraint is shown in Table 6.3. Note that for this 

example the third constraint is not active; thus, it was not fitted when creating the MBKG 

surrogate models. From Table 6.2 it is seen that optimization converged after six 

iterations. When studying the optimization history in both tables, it is seen that initially 
( .L.) 49.8%C

FP =  for constraint 1 and ( .L.) 50.3%C
FP =  for constraint 2, both of which are 

much larger than 2.275%TAR
FP = . By iteration six, however, ( .L.) 2.295%C

FP =  for 

constraint 1 and ( .L.) 2.294%C
FP =  for constraint 2, both of which are close to the target 

probability of failure and were within the optimization tolerances, thus, optimization 

converged. From the formulation of the optimization problem, the optimum design gives 
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90% probability, given all available information (i.e., the DoE samples and prior 

information), that the true probability of failure is less than 2.295% and 2.294% for 

constraint 1 and constraint 2, respectively. Thus, there is 10% probability that the true 

probability of failure is larger than 2.295% and 2.294% for constraint 1 and constraint 2, 

respectively. This is due to limited information being available in this case a limited 

number of DoE samples being used, i.e., the true probability of failure cannot be 

calculated using the MBKG surrogate model. As more DoE samples are used, i.e., as 

more information is used, to create the MBKG surrogate model, the optimum result 

should converge to the true solution. As seen from both Tables 6.2 and 6.3, the true 

probability of failure is less than 2.295% and 2.294% for constraint 1 and constraint 2, 

respectively. 

Also note that the mean value of the probability of failure should be close to the 

true probability of failure (i.e., probability of failure of constraints without noise) if the 

MBKG surrogate model is accurate. From Table 6.2, it is seen that the mean value is 

close to the true probability of failure for constraint 1. For constraint 2, from Table 6.3 it 

is seen that the mean probability of failure value is close to the true probability of failure 

but is not as close as constraint 1. 

Table 6.2 Optimization History for Small Noise Constraint 1 

Iteration 1d  2d  Cost 1
True FP  

1
Mean FP  

1

( . .)C L
FP  

1 5.1900 0.7400 –2.2922 48.891% 48.881% 49.814% 
2 4.7314 1.3088 –2.0241 15.223% 15.419% 16.285% 
3 4.8180 1.5269 –1.9174 5.466% 5.507% 5.933% 
4 4.9635 1.5982 –1.8827 2.782% 2.853% 3.162% 
5 5.0247 1.6258 –1.8701 2.082% 2.090% 2.318% 
6 5.0338 1.6249 –1.8705 2.029% 2.041% 2.295% 
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Table 6.3 Optimization History for Small Noise Constraint 2 

Iteration 1d  2d  Cost 2
True FP  

2
Mean FP  

2

( . .)C L
FP  

1 5.1900 0.7400 –2.2922 48.473% 47.977% 50.329% 
2 4.7314 1.3088 –2.0241 1.908% 2.187% 3.119% 
3 4.8180 1.5269 –1.9174 0.833% 1.009% 1.538% 
4 4.9635 1.5982 –1.8827 1.187% 1.380% 1.972% 
5 5.0247 1.6258 –1.8701 1.352% 1.499% 2.134% 
6 5.0338 1.6249 –1.8705 1.451% 1.636% 2.294% 

 

 

To demonstrate how the optimum solution converges to the true solution without 

noise when more DoE samples are used, i.e., more information is used, optimization was 

carried out using a different number of DoE samples. A total of five different 

optimization runs were done using 25, 45, 65, 85, and 105 DoE samples, respectively. 

Tables 6.4 and 6.5 show the optimization history using the different numbers of DoE 

samples to fit the MBKG surrogate model. Note that all MBKG surrogate models started 

with 25 initial DoE samples, and the remaining DoE samples were inserted 20 at a time 

using the developed sequential sampling method. When looking at the design history in 

the tables, it is seen that the optimum design appears to be converging to the true 

optimum design. For this example, the true optimum design means the optimum design 

for using the constraints with no noise. It is also seen for both constraints that the true 

probability of failure is less than ( . .)C L
FP  for all optimization runs. It is seen that when only 

25 DoE samples are used the design is very conservative compared to when 105 DoE 

samples are used. 

The next section will present optimization results for the medium and large noise 

levels as well as compare the results for the small, medium, and large noise levels. 
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Table 6.4 Optimization History for Different Numbers of DoE 
Constraint 1 

# DoE 1d  2d  Cost 1
True FP  

1
Mean FP  

1

( . .)C L
FP  

25 3.8538 2.6257 –1.4637 1.278% 1.376% 2.245% 
45 4.7637 1.7715 –1.8068 1.909% 1.998% 2.297% 
65 4.9260 1.6783 –1.8469 2.008% 1.988% 2.222% 
85 4.9982 1.6416 –1.8630 2.020% 2.039% 2.295% 
105 5.0338 1.6249 –1.8705 2.029% 2.041% 2.295% 
True 5.05 1.59 –1.8860 2.291% N/A N/A 

Table 6.5 Optimization History for Different Numbers of DoE 
Constraint 2 

# DoE 1d  2d  Cost 2
True FP  

2
Mean FP  

2

( . .)C L
FP  

25 3.8538 2.6257 –1.4637 0.000% 0.881% 2.266% 
45 4.7637 1.7715 –1.8068 0.036% 0.838% 2.177% 
65 4.9260 1.6783 –1.8469 0.391% 0.838% 1.746% 
85 4.9982 1.6416 –1.8630 0.950% 1.285% 2.102% 
105 5.0338 1.6249 –1.8705 1.451% 1.636% 2.294% 
True 5.05 1.59 –1.8860 2.279% N/A N/A 

 

 

6.3.3 Comparing Small, Medium, and Large Noise 

Optimization Results 

The same optimization problem was solved using the medium and large noise 

values in Table 6.1. Tables 6.6 and 6.7 show the optimization history for the medium 

noise level for constraints 1 and 2, respectively. From the tables it is seen that 

optimization finished after eight iterations. Optimization stopped because the relative 

changes in the design variables were less than the tolerance. However, the relative 

maximum constraint violation at the eighth iteration was 1.46 3e − , which is slightly 

larger than the tolerance value of 1 3e − . For constraint 1 it is seen that ( . .) 2.228%C L
FP =  
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is actually less than 2.275%TAR
FP = . Constraint 2, on the other hand, is the one with the 

constraint violation, ( . .) 2.347%C L
FP = , which is slightly larger than 2.275%TAR

FP = . Even 

with the small constraint violation, it is seen that the true probability of failure is less than 
( . .)C L

FP  for both constraints. 

It can also be seen from the tables that, while the posterior mean value of the 

probability of failure does not match well to the true probability of failure, it is close to 

the true value for both constraints. This is actually why there is a need to use the 

developed confidence-based RBDO method: because there is uncertainty in what the 

probability of failure value is. Sometimes the mean value of the probability of failure 

underestimates the true value, and sometimes it overestimates the true value. However, 

using the confidence-based RBDO method gives a probability of 90% (90% for this 

example because . . 90%C L = ) that the true probability of failure is less than ( . .)C L
FP  at the 

optimum design. 

Table 6.6 Optimization History for Medium Noise Constraint 1 

Iteration 1d  2d  Cost 1
True FP  

1
Mean FP  

1

( . .)C L
FP  

1 5.1900 0.7400 –2.2922 48.902% 50.058% 51.648% 
2 4.7479 1.3157 –2.0200 14.490% 13.686% 14.827% 
3 4.8263 1.5291 –1.9163 5.312% 5.660% 6.345% 
4 4.9713 1.6067 –1.8788 2.600% 2.612% 3.034% 
5 5.0009 1.6272 –1.8694 2.181% 2.315% 2.668% 
6 5.0158 1.6293 –1.8685 2.083% 2.051% 2.351% 
7 5.0442 1.6208 –1.8723 2.062% 1.963% 2.273% 
8 5.0347 1.6253 –1.8703 2.017% 1.961% 2.228% 
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Table 6.7 Optimization History for Medium Noise Constraint 2 

Iteration 1d  2d  Cost 2
True FP  

2
Mean FP  

2

( . .)C L
FP  

1 5.1900 0.7400 –2.2922 48.431% 48.949% 51.465% 
2 4.7479 1.3157 –2.0200 2.102% 2.306% 3.375% 
3 4.8263 1.5291 –1.9163 0.876% 1.009% 1.607% 
4 4.9713 1.6067 –1.8788 1.146% 1.529% 2.224% 
5 5.0009 1.6272 –1.8694 1.144% 1.267% 1.861% 
6 5.0158 1.6293 –1.8685 1.233% 1.261% 1.801% 
7 5.0442 1.6208 –1.8723 1.618% 1.863% 2.643% 
8 5.0347 1.6253 –1.8703 1.466% 1.493% 2.347% 

 

 

Tables 6.8 and 6.9 show the optimization history for the large noise level for 

constraint 1 and constraint 2, respectively. From the tables it is seen that optimization 

finished after six iterations. However, similar to the medium noise level case, 

optimization stopped because the relative changes in the design variables were less than 

the tolerance. The relative constraint violation at iteration six was 2.64 3e − , which 

exceeds the tolerance value of 1 3e − . This can be seen in the tables for both constraints, 

as ( . .) 2.321%C L
FP =  and ( . .) 2.408%C L

FP =  for constraint 1 and constraint 2 respectively; 

both exceeded 2.275%TAR
FP = . Even with the constraint violation, the results in the tables  

make it seem as though optimization was converging towards a design that would satisfy 

the constraint tolerance if the tolerance for the relative change in design variables was 

tightened some. However, optimization would have to actually be done with this tighter 

tolerance to confirm that it does converge to a solution.  

It is also interesting to note, that for constraint 1 at the sixth iteration, the true 

probability of failure, 2.362%TRUE
FP = , is actually larger than ( . .) 2.321%C L

FP = . Recall 

that, by definition, given all information used, there is 90% probability that the true 

probability of failure is less than ( . .)C L
FP . This means that there is 10% probability that the 

true probability of failure is larger than ( . .)C L
FP . For constraint 1 this is an example of that 
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10%. This is an example where not having “perfect information” leads to a design that 

would not be acceptable. There may be two possibilities for why this occurred. The first 

is that maybe more DoE samples are needed to farther refine the MBKG surrogate model 

to improve the posterior distributions. From Table 6.8 is seen that the posterior mean of 

the probability of failure for constraint 1 does not compare well to the true probability of 

failure. This may indicate that using more DoE samples may help to further improve the 

MBKG surrogate model and posterior distributions. 

The second possibility is that the large noise may be so large that it is “washing 

out” the true underlying response value completely. If this is true, then the problem 

cannot be solved using the MBKG surrogate model as formulated in this work. That is 

one limitation of the developed MBKG surrogate modeling method: if the noise is larger 

than the overall response variance, the developed method is not applicable. Further 

investigation using more DoE samples to carry out optimization would need to be done to 

try to determine if this situation is due to the lack of information, i.e., lack of DoE 

samples, or if indeed the large noise is too great for this method to be able to solve the 

problem. 

Lastly, it is interesting to compare the optimization results for the three different 

noise levels, even though optimization did not fully converge for the medium and large 

noise levels. Tables 6.10 and 6.11 show a comparison of the optimization results for 

constraints 1 and 2 respectively. From the tables it can be seen that small and medium 

noise results are fairly similar to each other; they appear to have converged to a similar 

optimum design. The large noise, is not as similar to the others, but it is relatively close. 

This chapter demonstrated that for the small and medium noise levels the 

developed confidence-based RBDO method was able to solve the problems to come up 

with a reliable optimum satisfying the desired confidence levels. Further investigation of 

the large noise is needed to see if using more DoE samples would give a satisfactory 

solution. 
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Table 6.8 Optimization History for Large Noise Constraint 1 

Iteration 1d  2d  Cost 1
True FP  

1
Mean FP  

1

( . .)C L
FP  

1 5.1900 0.7400 –2.2922 48.884% 48.961% 51.132% 
2 4.7189 1.3898 –1.9853 11.644% 11.338% 12.808% 
3 4.8339 1.5610 –1.9013 4.547% 4.723% 5.520% 
4 5.0297 1.5520 –1.9032 3.057% 2.626% 3.131% 
5 5.0283 1.6120 –1.8762 2.202% 1.758% 2.214% 
6 4.9888 1.6192 –1.8731 2.362% 1.950% 2.321% 

Table 6.9 Optimization History for Large Noise Constraint 2 

Iteration 1d  2d  Cost 2
True FP  

2
Mean FP  

2

( . .)C L
FP  

1 5.1900 0.7400 –2.2922 48.412% 49.642% 52.655% 
2 4.7189 1.3898 –1.9853 1.105% 1.320% 2.252% 
3 4.8339 1.5610 –1.9013 0.677% 0.553% 0.924% 
4 5.0297 1.5520 –1.9032 2.803% 2.596% 3.891% 
5 5.0283 1.6120 –1.8762 1.579% 1.992% 3.213% 
6 4.9888 1.6192 –1.8731 1.141% 1.473% 2.408% 

Table 6.10 Comparing Optimization Results for Different Noise Levels Constraint 1 

Noise # Iterations 1d  2d  Cost 1
True FP  

1
Mean FP  

1

( . .)C L
FP  

Small 6 5.0338 1.6249 –1.8705 2.029% 2.041% 2.295% 
Medium 8 5.0347 1.6253 –1.8703 2.017% 1.961% 2.228% 

Large 6 4.9888 1.6192 –1.8731 2.362% 1.950% 2.321% 
No Noise True 5.05 1.59 –1.8860 2.291% N/A N/A 

Table 6.11 Comparing Optimization Results for Different Noise Levels Constraint 2 

Noise # Iterations 1d  2d  Cost 2
True FP  

2
Mean FP  

2

( . .)C L
FP  

Small 6 5.0338 1.6249 –1.8705 1.451% 1.636% 2.294% 
Medium 8 5.0347 1.6253 –1.8703 1.466% 1.493% 2.347% 

Large 6 4.9888 1.6192 –1.8731 1.141% 1.473% 2.408% 
No Noise True 5.05 1.59 –1.8860 2.279% N/A N/A 
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6.4 A 3-D Multibody Dynamics Block-Car Example 

This section will present a 3-D multibody dynamics (MBD) block-car example 

that uses the developed methods to carry out confidence-based RBDO. The problem is a 

simple example to demonstrate using the method for an actual engineering problem that 

contains noise in the response. Figure 6.5 shows the multibody dynamics block-car used 

for this example. The car is modeled as a simple block with four wheels as shown in the 

figure. 

Reliability-based design optimization of this example was attempted previously 

using standard Kriging methods as the surrogate modeling method. However, the 

standard Kriging methods failed when trying to create the surrogate model for the contact 

force due to the noise in the contact force response. The standard Kriging method failed 

in that the predicted response surface was not a smooth surface. The predicted response 

surface looked like white noise, i.e., it was not smooth and was jagged. This example was 

the motivation that led to the research carried out in this work and the development of the 

methods for handling noisy response problems. 

 

Figure 6.5 Multibody Dynamics Block-Car Example 

The objective is to maximize the distance that the car travels up the incline before 

it loses traction. The three design variables are the mass of the car and the locations of the 
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center of mass in the x  and y  directions. The two constraints for this example are the 

contact force between the front wheels and the ground. The contact force is constrained 

so that it should not be less than 125 pounds. These constraints are imposed so that the 

car does not flip over backwards when going up the incline. Contact forces calculated by 

MBD simulation software are known to be inherently noisy responses. For this example 

the commercially available MBD software package used was RecurDyn. Deterministic 

design optimization (DDO) for this problem was carried out first. This was done in order 

to have a good starting point for confidence-based RBDO. In order to carry out DDO, the 

MBKG surrogate modeling method developed in this work was used. The MBKG 

surrogate model was fitted using 25 DoE for each constraint and the objective. After 

fitting the MBKG surrogate model, the 25 mean values for the responses were then 

available. The 25 DoE and 25 mean response values were then used with the standard 

Kriging methods to calculate the sensitivity of the response for the current design point. 

This was done for the two constraints and the objective function. The mean response 

values and sensitivity of the responses for both constraints and the objective were then 

provided to the optimization algorithm. 

Table 6.12 shows the design bounds for the design variables and the initial 

starting design point, where M  is the mass of the car, xCM  is the x  coordinate location 

for the center of mass, and yCM  is the y  coordinate location for the center of mass, 

denoted as 1d , 2d , and 3d , respectively. The objective function for optimization is to 

maximize the distance the car travels up the incline before it loses traction. The two 

constraints are that the contact force in the front wheels are greater than 125 pounds. 
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Table 6.12 Design Bounds and Initial Design Point for DDO 

Design Variable Initial Lower Bound Upper Bound 

1d M=  55  45  65  

2 xd CM=  0  60−  60  

3 yd CM=  40−  44−  36−  

 

 

The DDO problem is formulated as shown in Eq. (6.10). The initial design point 

for DDO is the center of the design domain. Table 6.13 shows the DDO optimization 

history results. As seen in the table, the distance the car traveled, i.e., the objective 

function, was maximized during the optimization process, and the constraints became 

active as the optimization algorithm progressed through the iterations. It is seen in the 

table that the optimization algorithm converged to a solution on the 11th iteration. The 

DDO optimum point was used as the initial design point for carrying out confidence-

based RBDO. 
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Table 6.13 DDO Optimization History for Block Car 

Iteration 1d  2d  3d  Objective 1h  2h  
1 55.0000 0.0000 –40.0000 2381.773 139.414 139.069 
2 54.9302 –3.9493 –38.9974 2399.437 132.918 132.733 
3 56.9627 –20.8840 –36.0000 2507.059 120.636 120.289 
4 62.0902 –23.8850 –36.6840 2521.744 127.108 128.648 
5 65.0000 –28.6530 –39.1904 2550.072 130.828 129.992 
6 65.0000 –33.6832 –43.5372 2587.930 125.868 125.280 
7 65.0000 –34.2504 –44.0000 2593.061 125.775 124.736 
8 65.0000 –34.2465 –43.6772 2594.082 125.207 124.516 
9 65.0000 –33.8138 –43.8212 2588.483 125.608 125.984 
10 65.0000 –33.8853 –43.7777 2589.537 125.797 125.087 
11 65.0000 –33.9238 –43.7830 2589.827 125.313 125.218 

 

 

Table 6.14 shows the design bounds for the design variables and the initial 

starting design point, where M  is the mass of the car, xCM  is the x  coordinate location 

for the center of mass, and yCM  is the y  coordinate location for the center of mass. 

These design variables are denoted as 1d , 2d , and 3d , respectively, for confidence-based 

RBDO. The objective function for optimization is to maximize the distance the car 

travels up the incline before it loses traction. The two constraints are that the contact 

force in the front wheels are greater than 125 pounds. 

Table 6.14 Design Bounds and Initial Design Point 
for Confidence-Based RBDO 

Design Variable Initial Lower Bound Upper Bound 

1d M=  65  45  65  

2 xd CM=  33.92−  60−  60  

3 yd CM=  43.78−  44−  36−  
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The confidence-based RBDO problem is formulated as shown in Eq. (6.11). The 

initial design point for confidence-based RBDO is the DDO solution. When fitting the 

MBKG surrogate models 25 initial DoE samples were used. After fitting the MBKG 

surrogate models two sequential sampling iterations were performed using the developed 

sequential sampling method. For each sequential sampling iteration 25 DoE samples were 

added. Thus, giving a total of 75 DoE samples that were used to fit the MBKG surrogate 

models. The MBKG surrogate models were then used to generate the posterior 

distribution of the probability of failure that was used to carry out confidence-based 

RBDO. 

Tables 6.15 and 6.16 show the optimization history for constraints 1 and 2. As 

seen in the tables, at the initial design ( . .)C L
FP  is 44.270% and 62.343% for constraint 1 

and 2, respectively; both are much larger than the target 2.275%. It is seen that, in the 

first three iterations of optimization, ( . .)C L
FP  decreases quickly, and then for the remaining 

iterations it decreases at a slower rate for both constraints. The optimization algorithm 

converged to a solution after nine iterations, the optimization tolerances were satisfied, 

and there is no constraint violation at the optimum solution. As seen in Table 6.15, the 

objective, i.e., the maximum distance the car travels before losing traction, is decreased 

as the constraints are satisfied. At the optimum design there is 10% probability that the 

true probability of failure is larger than 0.439% and 1.751% for constraints 1 and 2 as 

seen in Tables 6.15 and 6.16, respectively. These values clearly satisfy the target value of 

2.275%. It is interesting to note how the optimization algorithm did not change the mass 

of the car from 65, which was the mass value from the DDO solution. This is believed to 

be because the higher the mass the more traction the car will have to travel farther up the 

incline. Thus, the confidence-based RBDO method was successful in finding a solution 

that met both the target probability of failure and target confidence level. 
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Table 6.15 Confidence-Based RBDO Optimization History for Block-Car 
Constraint 1 

Iteration 1d  2d  3d  Objective 1
Mean FP  

1

( . .)C L
FP  

1 65 –33.9238 –43.7830 2589.806 38.657% 44.270% 
2 65 –32.2557 –42.3679 2575.278 4.508% 5.878% 
3 65 –31.7703 –41.3944 2572.964 2.061% 2.547% 
4 65 –30.7138 –37.8149 2573.467 1.852% 2.573% 
5 65 –30.8124 –38.8367 2571.488 1.566% 2.240% 
6 65 –30.1286 –37.7002 2567.938 0.327% 0.603% 
7 65 –30.3040 –37.5318 2569.594 0.412% 0.622% 
8 65 –29.9892 –36.7301 2568.900 0.521% 0.746% 
9 65 –29.8552 –36.3724 2568.612 0.307% 0.439% 
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Table 6.16 Confidence-Based RBDO Optimization History for Block-Car 
Constraint 2 

Iteration 1d  2d  3d  Objective 2
Mean FP  

2

( . .)C L
FP  

1 65 –33.9238 –43.7830 2589.806 56.693% 62.343% 
2 65 –32.2557 –42.3679 2575.278 14.801% 18.107% 
3 65 –31.7703 –41.3944 2572.964 7.821% 9.917% 
4 65 –30.7138 –37.8149 2573.467 6.281% 8.765% 
5 65 –30.8124 –38.8367 2571.488 4.933% 6.709% 
6 65 –30.1286 –37.7002 2567.938 1.119% 1.682% 
7 65 –30.3040 –37.5318 2569.594 2.189% 3.220% 
8 65 –29.9892 –36.7301 2568.900 1.744% 2.625% 
9 65 –29.8552 –36.3724 2568.612 0.990% 1.751% 
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CHAPTER 7 

CONCLUSION, CURRENT RESEARCH, AND FUTURE RESEARCH 

7.1 Conclusion 

Numerous sensitivity-based reliability-based design optimization (RBDO) 

methods have been developed and applied to various engineering problems. However, it 

is common that the sensitivity is difficult or even impossible to calculate for highly 

nonlinear and coupled fluid structure interaction problems, e.g., crash and blast problems. 

Sampling-based RBDO methods that use surrogate models to approximate the simulation 

models and then carry out Monte Carlo simulation using the surrogate model to perform 

the reliability analysis have been developed. Current sampling-based RBDO applications 

have been used on problems in which the simulation models do not contain noise or it is 

assumed that there is no noise. However, it has been found that some simulation models 

contain noise in the responses, which makes carrying out RBDO difficult. This has 

brought about the need for a surrogate modeling method that can handle responses that 

contain noise. There is also a need for a surrogate modeling method that can provide a 

way to not only carry out RBDO but to carry out confidence-based RBDO to ensure a 

conservative reliable optimum design. 

A modified Bayesian Kriging (MBKG) surrogate modeling method was 

developed for handling problems whose responses contain noise. The prior distributions 

to be used for fitting the MBKG surrogate model have been determined, and the full 

conditional distributions derived. The full conditional distributions were coded into a 

Gibbs sampling algorithm in order to use Markov chain Monte Carlo (MCMC) to fit the 

MBKG surrogate model. All the coding was done in MATLAB so that the methods 

developed in this study can be easily integrated with previously developed RBDO 

methods. It was shown that MBKG surrogate model does work for handling problems 

whose responses contain noise for which the standard Kriging approaches fail to work. 
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A sequential sampling method that uses the posterior credible sets of the MBKG 

surrogate model has been developed. The new method was tested with an example 

problem, and it was demonstrated how the uncertainty of the predicted limit state is 

reduced and the predicted limit state converges to the true limit state as more design of 

experiment (DoE) samples are used. It was also demonstrated that the posterior 

distribution of the probability of failure converges as more DoE samples are used. 

A confidence-based RBDO method using the posterior distribution of the 

probability of failure was developed. The method was demonstrated using a mathematical 

example with different amounts of noise. It was shown that the method converged to a 

solution and was able to find an optimum reliable design that meets the desired 

confidence levels. It was shown that, for small and medium noise, the method found two 

solutions that are very similar, i.e., almost the same design point. For the large noise, the 

optimization did converge for the relative change in the design variable tolerance; 

however, the constraint tolerance was still violated. The optimization history did show 

that it was converging to a solution that would be similar to that of the small and medium 

noise. 

Overall, an MBKG surrogate modeling method, a sequential sampling method for 

reducing the uncertainty in the posterior distributions, and a confidence-based RBDO 

method were successfully developed and demonstrated using a mathematical example. 

The developed methods were also successfully demonstrated using a 3-D multibody 

dynamics engineering example. 

 

7.2 Future Research 

Running the MCMC chains to fit the models tends to be the most computationally 

intensive part. Further investigation is needed so that the Metropolis-Hastings algorithm 

can be finely tuned; this would greatly improve the computational time for fitting the 
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MCMC chains. There are also some known bottle-necks in some of the functions used in 

fitting the MCMC chains, they can be rewritten to improve the computational time. A 

study on the use of different priors for different noise levels would also help with fine-

tuning the model in regards to improving the computational efficiency. 

Additional future research would be investigating how a dynamic Bayesian 

Kriging method can be developed in order to dynamically select the best mean structure 

and the correlation function that best fits the data for the problem being solved. The 

deviance information criterion (DIC) is one possible method that can be used to compare 

Bayesian regression models and select the one that best fits the data. There are also 

methods that use penalized loss functions to compare regression models. Research to 

study these methods and how they could be applied the developed MBKG surrogate 

modeling method is needed to determine if they can be used to develop a dynamic 

Bayesian Kriging method. 

It has also been recognized that the use of the posterior distribution of the 

probability of failure from the Bayesian analysis provides for a convenient and natural 

way to carry out confidence-based RBDO. The same concept could be applied to a 

different Bayesian Kriging model for noise-free problems. Using the noise-free Bayesian 

Kriging model, confidence-based RBDO could be carried out using the same method as 

presented in Chapter 6. 
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